两个人做人爱视频免费,97久久精品人人搡人妻人人玩,欧洲精品码一区二区三区,999zyz玖玖资源站永久

我要投稿 投訴建議

《積的變化規律 》教學設計

時間:2021-03-04 18:30:35 教學設計 我要投稿

《積的變化規律 》教學設計

  作為一位不辭辛勞的人民教師,就難以避免地要準備教學設計,教學設計是根據課程標準的要求和教學對象的特點,將教學諸要素有序安排,確定合適的教學方案的設想和計劃。教學設計應該怎么寫呢?下面是小編收集整理的《積的變化規律 》教學設計,僅供參考,大家一起來看看吧。

《積的變化規律 》教學設計

《積的變化規律 》教學設計1

  教材分析

  《積的變化規律》是人教版四年級上冊第三單元的例題、

  本節課是在學生已經學習了三位數乘兩位數和使用計算器進行計算的基礎上,引導學生借助計算器探索積的一些變化規律,掌握這些規律,為學生進一步加深對乘法運算的理解以及今后自主探索和理解小數乘除法的計算方法做好準備。

  教材首先出示2×6 =12、20×6=120、200×6=1200 ,讓學生依據給出的乘法算式,探索當一個因數不變,另一個因數乘一個數,得到的積會有什么變化,引導學生作出猜想。再出示20×4=80,10×4=40,5×4=20,引導學生觀察,發現規律,提出猜想。

  學情分析

  該內容是在學生已經學習了三位數乘兩位數和使用計算器進行計算的基礎上,引導學生借助計算器探索積的一些變化規律,掌握這些規律,為學生進一步加深對乘法運算的理解以及今后自主探索和理解小數乘除法的計算方法做好準備。

  教學目標

  一、知識與技能:

 。1) 使學生探索并掌握一個因數不變,另一個因數乘幾,積也隨著乘幾的變化規律。

  二、過程與方法:

 。1)經歷觀察、比較、猜想、驗證和歸納等一系列的數學活動,體驗探索和發現數學規律的基本方法,進一步獲得一些探索數學規律的經驗,發展思維能力。

  三、情感態度價值觀:

 。1)通過學習活動的參與,培養學生合作交流的能力,并在探索活動中感受數學結論的嚴謹性與正確性,獲得成功的體驗,增強學習數學的興趣和自信心。

  教學重點和難點

  1.教學重點:

  使學生探索并掌握一個因數不變,另一個因數乘幾(或除以幾),積也隨著乘幾(或除以幾)的變化規律。

  2、教學難點:在探索和發現規律上,能更多的體驗一般策略和方法,發展數學思考。

《積的變化規律 》教學設計2

  教學目標:

 。、讓學生探索并掌握一個因數不變,另一個因數乘(或除以)幾,積也乘(或除以)幾的變化規律;能將這規律恰當地運用于實際計算和解決簡單的實際問題。

 。、使學生經歷積的變化規律的發現過程,初步獲得探索和發現數學規律的基本方法和經驗。

  3、通過學習活動的參與,培養學生的探究能力、合作交流能力和歸納總結能力,使學生獲得成功的樂趣,增強學習的興趣和自信心。

  4、培養學生從正反兩個方面觀察事物的辨證思想。

  教學重點:發現并運用積的變化規律。

  教學難點:積的變化規律的探究策略。

  教學過程:

  一、創設情景,提出問題

  屏幕顯示:為九九重陽節開展的“走進敬老院,濃濃敬老請”活動我們全校學生都捐出自己的零花錢,為老人們購買一些物品。請你們幫忙算一算,一千克橙子6元,買2千克花多少錢?40千克呢?200千克呢?(學生回答)

  6╳2= 12(元)

  6╳40=240(元)

  6╳200=1200(元)

  師:仔細觀察、比較這組算式,你能發現什么?

  生1:有一個因數都是6。

  生2:對,一個因數相同,另一個因數不同,積也不同。

  師 :觀察得真仔細! 一個因數相同可以說一個因數不變,那另一個因數呢?

  生3:另一個因數變了,積也變了。

  生4:我看到一個因數不變,另一個因數越變越大,積也越變越大。

  師 :你是從上往下觀察的,還可以怎樣看?

  生5:倒過來,從下往上看,一個因數不變,另一個因數越變越大,積也越變越大。

  師 :當一個因數不變時,另一個因數和積是怎樣變化的?積的變化有沒有規律呢?是什么規律呢?這節課我們來研究這個問題。

  二.自主探究,發現規律

  1、研究一個因數不變,另一個因數變大,積的變化情況。

  6×2= 12(元)

  6×20=120(元)

  6×200=1200(元)

 。1)師:在研究問題的過程過程中,為了方便我們研究和表達,可以把這組算式分別說成(1)式,(2)式,(3)式。

  (2)引導學生分別用(2)式、(3)式與(1)式比,觀察因數和積分別有怎樣的變化?在小組內互相說一說。

  (3)出示18×2=36和30×2=60,還是與(1)式比較,觀察因數和積分別又有怎樣的變化?在小組內互相說一說。

  師:誰來說說通過剛才的兩次比較,你們又發現了什么?

  生:一個因數不變,另一個因數變化,積也變化。

  師:怎樣變化的?能說得具體些嗎?

  生1:一個因數不變,另一個因數乘一個數 ,積也乘相同的數。

  生2:一個因數不變,另一個因數乘幾 ,積也乘幾。

  師:你們真能干!剛才,我們從上往下觀察,發現了這樣的積的變化特點,那從下往上觀察,用剛才比較研究的方法,比一比,看看有沒有新的發現?具體應該怎么比呢?

  2、研究一個因數不變,另一個因數變小,積的變化情況。

 。1)師:如果這組算式從下往上觀察,分別把上面的兩個式子與底下的一個式子作比較,會不會有新的發現呢?

  學生獨立思考后把想法在小組內交流一下。

 。2)全班匯報交流:你發現了什么?是怎樣發現的?

  3、驗證規律。

  師談話:剛才大家發現的規律是不是具有普遍性呢?研究數學問題一般不匆忙下結論,要再舉一例子,看看會不會出現相同的情況。如果有一個例子出現了不同的情況,就不能把這種發現當作規律,這就是研究數學問題應該持有的嚴謹的態度。你能自己舉例說明積的變化規律嗎?

  每位學生寫3個算式,同桌互相檢查和交流因數和積是怎樣變化的。(匯報情況略)

  師 :既然許許多多的乘法算式中都有這樣的積的變化特點,它就是今天我們探究的積的變化規律。誰來把這個規律再說一說。

  生 :一個因數不變,另一個因數乘幾 ,積也乘幾;一個因數不變,另一個因數除以幾 ,積也除以幾。

  師 :數學講究簡潔美,能把它說得再簡單點嗎?

  生 :一個因數不變,另一個因數乘(或除以)幾 ,積也乘(或除以)幾。

  師 :說得太棒了!同學們,祝賀你們發現了積的變化規律,愿意用它解決實際問題嗎?

  三、運用規律,解決問題

  1、根據8×50=400,直接寫出下面各題的積。

  16×50= 32×50= 8×25=

  2、全社會各界朋友發起了向西藏教育捐贈和教師自愿者等活動,他們考慮著何種運輸方式進入西藏。咱們也幫忙分析一下,一輛汽車在青藏公路上以60千米/時的速度行使,4小時可以行( )千米。一列火車在青藏鐵路上行駛的速度是汽車的2倍,這列火車用同樣的時間可行千米。

  生 :一輛汽車4小時可以行駛240千米,用60乘4等于240千米。

  師 :根據什么數量關系來列式計算?

  生 :速度乘時間等于路程。

  師 :第二個問題呢?

  生 :60×2×4=480千米,先算出火車速度,乘時間4小時等于路程。

  師 :還有其它解法嗎?

  生 :240×2=480(千米),因為速度乘2就是一個因數乘2,時間不變就是一個因數不變,那么積也就是路程也要乘2等于480千米。

  師 :能運用積的變化規律解決問題,你的數學意識很強。同學們喜歡那種方法?

  生 :喜歡第2種,只需一步計算。

  師 :多關注已有信息,靈活運用規律能使解題思路更開闊。

  ……

  四、全課總結,拓展延伸

  師 :在這節數學課上,你們還有什么收獲嗎?

  生1:我們找到了積的變化規律:一個因數不變,另一個因數乘(或除以)幾 ,積也乘(或除以)幾。

  生2:我會用積的變化規律解決生活中的問題,很方便。

  師:大家用自己智慧的雙眼,聰明的大腦發現并運用了乘法規律,老師真為你們高興。學以致用,其樂無窮。先選擇下面計算題中的一道算出積,然后直接寫出其他各題的積。

  18×30= 18×15= 18×5= 54×5=

  師:比較18×15= 270和 54×5=270,你們還有什么新的問題、新的想法嗎?

  生:為什么兩個因數都變了,積卻不變呢?是不是有什么規律?

  師:多么有價值的問題!下課后你們用今天研究問題的方法去探究新的規律,老師祝你們成功!

《積的變化規律 》教學設計3

  教學內容:四年級教科書第58頁例4、

  教學目標:

  1、使學生經歷積的變化規律的發現過程,感受發現數學中的.規律是一件十分趣的事情。

  2、嘗試用簡潔的語言表達積的變化規律,培養初步的概括和表達能力。

  3、初步獲得探索規律的一般方法和經驗,發展學生的推理能力。

  重難點:

  重點:一個因數不變,另一個因數與積的變化情況。

  難點:自主思考探索,歸納積的變化規律。

  教學過程:

  一、激發興趣,導入新課

  師:我們在上課前玩一個對對子的游戲,看誰反應最快!

  師出:1只青蛙,( )條腿。(并拍手)

  生對:1只表蛙, 4條腿。

  … …

  師:你們的腦子轉得真快,其實在這個游戲中藏著許多的數學知識,讓我們一起來找一找。剛才同學們說2只青蛙8條腿,誰能列式?6只呢?18只呢?

  2×4=8

  6×4=24

  18×4=72

  二、自主學習,探索新知。

  1.師:觀察這組算式什么變了,什么沒變?

  生:其中一個因數變了,積也變了。另一個因數沒變。

  師: 把第一個算式的因數同第二個算式的因數比較,擴大了多少倍?積有什么變化?

  生:擴大了3倍,積也擴大3倍。

  師:第二個算式跟第三個算式比呢?

  師: 第一個算式跟第三個算式比呢?

  師:如果一個因數擴大10倍,20倍,100倍呢?積會怎么樣?

  生:也會擴大相同的倍數。

  師:這里你發現什么規律?

  總結:(板書)兩個因數相乘,其中一個因數不變,另一個因數擴大幾倍,積也擴大相同的倍數。

  2、運用這個規律練習

  24× 5=120 14×5=70

  24×10=( ) 14×( )=210

  24×20=( ) ( )×30=420

  學生填寫,并說說你是怎么想的。

  3、科學家都善于猜想,今天咱們也來一次大膽的猜想,你又會有什么發現?

  80×5=400

  40×5=200

  20×5=100

  小結:兩個因相乘,一個因數不變,另一個因數縮小幾倍,積也縮小相同的倍數。

  4、運用規律練習

  45×20=900 16×30=480

  45×10=( ) 16×15=( )

  45×2 =( ) ( )×15=120

  并說說你是怎么想的?

  5、整體概括規律

  師:誰能用一句話將兩條規律概括為一條?讓語言更簡潔。

  板書:兩個因數相乘,一個因數不變,另一個因數擴大或縮小幾倍,積也擴大或縮小相同的倍數。

  師:剛才我們發現的規律是乘法計算中一條特別重要的性質叫積的變化規律。

  板書:積的變化規律

  三、驗證規律

  師:大家發現的這條規律是不是具有普遍性呢?研究數學問題一般不匆忙下結論,再舉一例子,看是否一致,如果不同就不能下結論。那么我們來驗證一下吧!

  根據15×6=90,那么15×24=?,先根據規律來填寫,再算一下。你會接著寫嗎?

  四、運用規律練習

  12345679× 9=111111111

  12345679×18=( )

  12345679×27=( )

  12345679×( )=999999999

  五、拓展,你能發現什么規律?

  18×24=432

 。18÷2)×(24×20)=( )

 。18×2)×(24÷20)=( )

  小結:只要大家勤于思考,你還會發現積更多的變化規律。

《積的變化規律 》教學設計4

  教學內容:蘇教版義務教育課程標準實驗教科書數學四年級(下冊)P83例題,P83-84“想想做做”。

  教學目標:

  1、使學生借助計算器的計算,探索并掌握“一個因數不變,另一個因數乘幾,得到的積等于原來的積乘幾”的變化規律。

  2、使學生在利用計算器探索規律的過程中,經歷觀察、比較、猜想、驗證和歸納等一系列的數學活動,體驗探索和發現數學規律的基本方法,進一步獲得探索規律的經驗,發展思維能力。

  3、使學生在參與數學學習活動的過程中,學會與他人交流,體會與他人合作交流的價值,逐步形成良好的與他人合作的習慣和意識。

  4、使學生在發現規律的過程中,體驗數學活動的探索性和創造性,感受數學結論的嚴謹性和確定性,獲得成功的樂趣,增強學習數學的興趣和自信心。

  教學過程:

  一、游戲引入:

  用計算器玩游戲

  要求:在1-9中任意選一個數,然后用計算器把這個數乘3,再乘127,算出結果。只要一報出結果,老師馬上能知道,一開始在1-9中任意選擇的是哪個數。

  【意圖:計算器作為探索的工具并以游戲方式載入一是有利于激活學生熟練運用計算器的能力,同時對游戲中隱含的規律產生好奇,為后繼進一步運用計算器探索規律做好心理上的準備】

  二、揭示課題:

  1、剛才我們用計算器玩了個小游戲,今天課上我們還要用到計算器,我們要用它來探索規律。(板書課題:用計算器探索規律)

  2、看了這個課題,現在你最想了解的是什么?通過交流讓學生感受到三個方面:①什么規律? ②怎樣研究? ③有什么用?

  【意圖:一開始提出探索的目標有利于學生明確探索的內容和方向,把重點集中到探索和發現規律上來,本課的著力點自然地凸現了出來!

  三、探索規律

  (一)建立猜想

  1、用計算器計算:36×30的積。

  2、36、30在這個乘法算式中叫做什么?1080又叫做什么?

  3、猜想:如果其中的一個因數不變,另一個因數乘一個數,得到的積可能會有什么變化呢?比如,一個因數36不變,把另一個因數30乘2,或者把30乘10,積會有什么樣的變化呢?再比如,一個因數30不變,另一個因數36乘8,或者乘100,積又會有什么樣的變化呢?能不能來猜一猜?

《積的變化規律 》教學設計5

  教學內容:

  教材第58頁例4“積的變化規律”

  教學目標:

  1、使學生經歷積的變化規律的發現過程,感受發現數學中的規律是一件十分有趣的事情。

  2、嘗試用簡潔的語言表達積的變化規律,培養初步的概括和表達能力。

  3、初步獲得探索規律的一般方法和經驗,發展學生的推理能力。

  教學重難點:

  引導學生自己發現規律,概括規律,進而運用規律。

  教學過程:

  一、創設情景,提出目標。

  1、創設情景:通過前一段時間的學習,同學們對乘法的計算已經掌握的很好了,下面同學們算一算下面各題。

  8×3= 60×4=

  16×3= 180×4=

  32×3= 240×4=

  學生計算后。師:說說你是怎樣算的?你發現了什么?

  學生匯報交流,

  2、師引入:是的,在乘法運算中,積會隨著因數的變化而變化,這就是我們今天要研究的積的變化規律。

  3、提出目標:

  讓學生先說一說,再出示目標:

 。1)積的變化規律是什么?學這些規律有何用?

 。2)通過這節課的學習,你掌握了探索規律的什么方法?

  [設計意圖]上面這兩個題蘊涵了函數思想,通過這兩組練習,使學生對積的變化規律有一個初步的感性認識,為學習新知做好準備。

  二、展示學習成果

  1、小組內個人展示。

  (1)提出自學要求:自學課本58頁的例4、完成做一做后按學困生→中等生→優生的順序在小組內交流展示。

  (2)生自學,師巡視指導,收集學習信息。

  2、以小組為單位在全班展示發現的積的變化規律。

 。1)積隨因數擴大而擴大的規律。

 。2)積隨因數縮小而縮小的規律。

  3、師生共同討論把兩個規律合并。

 。1)合并:一個因數不變,另一個因數擴大(或縮。⿴妆,積也擴大(或縮。┫嗤谋稊怠

  (2)質疑討論,引發沖突。生先質疑,師再補充質疑:

  擴大(或縮小)什么意思?

  為什么是相同的倍數?

  對“一個因數不變”中的“因數”是否適用于任何整數。

 。3)在充分討論的基礎上,把規律補充完整。學生進一步理解積的變化規律。

  4、運用規律,完成練習。

  讓學生展示“做一做”的完成情況,并說一說是如何根據積的變化規律來完成的。

  [設計意圖]讓學生充分經歷學習的過程,學會研究問題的一般方法,使學生體會到學習的快樂。讓學生動腦、動口、動手,相互交流。進一步培養學生自主探究的能力和合作交流的意識。

  三、鞏固拓展,運用新知

  1、根據25×2=50,利用規律,直接寫答案。

  25×20= 25×( )=1500

  25×200= 25×( )=200

  25×XX= 25×( )=50

  說說自己是怎樣想的?

  2、練習九第1題。

  3、指導學生完成練習九第5題。(一個因數擴大,另一個因數縮小的積的變化規律)

  [設計意圖]通過練習,讓學生鞏固新知,進而引導學生繼續探索積的變化規律,使學生知道積的變化規律還沒研究完,從而進一步激發學生和探索欲望。

  四、課堂小結,布置作業

  1、學生談收獲。

  2、作業:

 。1)練習九的第2、3、4題。

  (2)兩因數的積是345,把其中一個因數乘40,另一個因數除以5,則新的積是多少?(提高題)

【《積的變化規律 》教學設計】相關文章:

小學數學教學設計:《找規律》04-06

《找規律》優秀教學設計范文07-02

劉積仁的創業故事06-19

一年級數學找規律教學設計(精選11篇)03-18

民俗形式麥積高抬09-25

《荷花》的教學設計03-03

小鳥的教學設計04-09

《蠶絲》的教學設計04-03

《燈光》的教學設計06-12

主站蜘蛛池模板: 内乡县| 和顺县| 长宁区| 琼中| 菏泽市| 龙山县| 仪陇县| 佛学| 溧水县| 鄄城县| 桐乡市| 普兰店市| 四会市| 武宣县| 宜宾县| 渝北区| 澄城县| 玛多县| 白玉县| 寿阳县| 丰原市| 泾川县| 镇江市| 南部县| 博湖县| 临海市| 云梦县| 湄潭县| 六枝特区| 玛多县| 昌都县| 德钦县| 息烽县| 马尔康县| 永福县| 湛江市| 保亭| 阿拉善左旗| 西乌珠穆沁旗| 北海市| 从江县|