小學《正比例》的教學設計(精選9篇)
作為一名教學工作者,時常需要準備好教學設計,教學設計是根據課程標準的要求和教學對象的特點,將教學諸要素有序安排,確定合適的教學方案的設想和計劃。那么優秀的教學設計是什么樣的呢?以下是小編整理的小學《正比例》的教學設計,歡迎大家借鑒與參考,希望對大家有所幫助。
小學《正比例》的教學設計 篇1
教學要求:
1、使學生認識正比例關系的意義,理解,掌握成正比例量的變化規律及其特征,能依據正比例的意義間斷兩種相關聯的量成不成正比例關系。
2、進一步培養學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯量成不成正比例關系的方法,培養學生判斷、推理的能力。
教學過程:
一、復習鋪墊
1、說出下列每組數量之間的關系。
(1)速度時間路程
(2)單價數量總價
(3)工作效率工作時間工作總量
2、引入新課
我們已經學過的一些常見數量關系,每組數量中,數量之間是有聯系的,存在著相依關系,這節課開始,我們就來研究和認識這種變化規律。今天,我們先認識正比例關系的意義。
二、教學新課
1、教學例1。
出示例1。讓學生計算,在課本上填表。
讓學生觀察表里兩種量變化的數據,思考。
(1)表里有哪兩種數量,這兩種數量是怎樣變化的?
(2)路程和時間相對應數值的比的比值各是多少?這兩種量變化有什么規律?
引導學生進行討論。
提問:這里比值50是什么數量?(誰能說出它的數量關系式?)
想一想,這個式子表示的是什么意思?
2、教學例2
出示例2和想一想
要求學生按剛才學習例1的方法學習例2,然后把你學習中的發現綜合起來告訴大家。
學生觀察思考后,指名回答。然后再提問,這兩種數量的變化規律是什么?你是怎樣發現的?
比值1.6是什么數量,你能用數量關系式表示出來嗎?
誰來說說這個式子表示的意思?
3、概括正比例的意義。
像例1、例2里這樣的兩種相關聯的量是怎樣的關系呢?請同學樣看課本第40頁最后一節。
4、具體認識
(1)提問:例1里有哪兩種相關聯的量?這兩種量成正比例關系嗎?為什么?
例2里的兩種量是不是成正比例的量?為什么?
(2)做練習八第1題。
5、教學例3
出示例3,讓學生思考
提問:怎樣判斷是不是成正比例?
請同學們看一看例3,書上怎樣判斷的,我們說得對不對。
強調:關鍵是列出關系式,看是不是比值一定。
三、鞏固練習
1、做練一練第1題。
指名學生口答,說明理由。
2、做練一練第2題。
指名口答,并要求說明理由。
3、做練習八第2題(小黑板)
讓學生把成正比例關系的先勾出來。
指名口答,選擇幾題讓學生說一說怎樣想的?
四、課堂小結
這節課學習了什么內容?正比例關系的意義是什么?用怎樣的式子表示Y和X這兩種相關的量成正比例?判斷兩種相關聯的量是不是成正比例,關鍵看什么?
五、家庭作業。
小學《正比例》的教學設計 篇2
【教學內容】
正比例
【教學目標】
使學生理解正比例的意義,會正確判斷成正比例的量。
【重點難點】
重點:理解正比例的意義。
難點:正確判斷兩個量是否成正比例的關系。
【教學準備】
投影儀。
【復習導入】
1、復習引入。
用投影儀逐一出示下面的題目,讓學生回答。
①已知路程和時間,怎樣求速度?
板書: =速度。
②已知總價和數量,怎樣求單價?
板書: =單價。
③已知工作總量和工作時間,怎樣求工作效率?
板書: =工作效率。
2、引入課題:這是我們過去學過的一些常見的數量關系。這節課我們進一步來研究這些數量關系的一些特征,首先來研究這些數量之間的正比例關系。板書課題:成正比例的量。
【新課講授】
1、教學例1。
教師用投影儀出示例1的圖和表格。
學生觀察上表并討論問題。
(1)鉛筆的總價和數量有關系嗎?
(2)鉛筆的總價是怎樣隨著數量的變化而變化的?
(3)鉛筆的總價和數量的變化有什么規律?組織學生在小組中討論,然后交流說一說。
根據觀察,學生可能會說出:
①鉛筆的總價隨著數量變化,它們是兩種相關聯的量。
②數量增加,總價也增加;數量降低,總價也減少。
③鉛筆的總價和數量的比值總是一定的,即單價一定。
教師指出:總價和數量有這樣的變化關系,我們就說總價和數量成正比例關系,總價和數量叫做成正比例的量。
2、教師出示:一列火車行駛的時間和路程如下表。
引導學生觀察、思考:路程和時間有關系嗎?路程怎樣隨著時間的變化而變化?路程和時間的變化有什么規律?
組織學生分析、討論、匯報:路程和時間是兩種相關聯的量,路程擴大,時間也跟著擴大;路程縮小,時間也跟著縮小;但是路程和時間的比值一定,寫成關系式是 =速度(一定)。
教師小結:所以說路程和時間成正比例關系,路程和時間叫做成正比例的量。
3、歸納概括正比例關系。
①組織學生分小組討論,上面兩個例子有什么共同規律?
②教師引導學生歸納總結:都是兩種相關聯的量,一種量變化,另一種量也隨著變化;如果這兩種量中相對應的兩個數的比值也就是商一定,這兩種量就叫做成正比例的量,它們的關系就叫做成正比例關系。
學生說一說是怎么理解正比例關系的。
要求學生把握三個要素:
第一:兩種相關聯的量。
第二:其中一個量增加,另一個量也增加;一個量減少,另一個量也減少。
第三:兩個量的比值一定。
4、用字母表示正比例的關系。
教師:如果用字母x和y表示兩種相關聯的量,用k表示它們的比值(一定),比例關系可以用這樣的式子表示: (一定)
5、教師:想一想,生活中還有哪些成正比例的量?
學生舉例說明并說出理由如:長方形的寬一定,面積和長成正比例;每袋牛奶質量一定,牛奶袋數和總質量成正比例;衣服的單價一定,購買衣服的數量和應付錢數成正比例。地磚的面積一定,教室地板面積和地磚塊數成正比例;
【課堂作業】
完成教材第46頁的“做一做”(1)~(3)。
答案:
(1) 比值表示每小時行駛多少km。
(2)成正比例。理由:路程隨著時間的變化而變化。
①時間增加,路程也增加,時間減少,路程也隨著減少;
②路程和時間的比值(速度)一定。
【課堂小結】
通過這節課的學習,你有什么收獲?
【課后作業】
完成練習冊中本課時的練習。
小學《正比例》的教學設計 篇3
教學內容
教科書第54頁例3,練習十二5,6,7題。
教學目標
1.進一步理解正比例的意義,會運用正比例知識解決簡單的實際問題。
2.通過運用正比例解決實際問題的活動,讓學生體驗數學的應用價值,培養學生解決問題的能力。
3.滲透函數思想,使學生受到辯證唯物主義觀念的啟蒙教育。
教學重、難點
運用正比例知識解決簡單的實際問題。
教學準備
教具:多媒體課件。
學具:作業本,數學書。
教學過程
一、復習引入
1.判斷下面各題中的兩種量是不是成正比例?為什么?
(1)飛機飛行的速度一定,飛行的時間和航程。
(2)梯形的上底和下底不變,梯形的面積和高。
(3)一個加數一定,和與另一個加數。
(4)如果y=3x,y和x。
2.揭示課題
教師:我們已經學過正比例的一些知識,應用這些知識可以解決生活中的實際問題。這節課,我們就來學習"正比例的應用"。
二、合作交流,探索新知
1.用課件出示例3
教師:這幅圖告訴我們一個什么事情?需要解決什么問題?
教師:先獨立思考,再小組合作交流,看能想出哪些方法解決這個問題。
2.全班交流解答方法
指導學生思考出:
(1)195÷5×8=312(元),先求每份報紙的單價,再求8份報紙的總價,就是李老師應付給郵局的錢。
(2)195÷(5÷8)=312(元),先求5份報紙是8份報紙的幾分之幾,即195元占李老師所付錢的幾分之幾,最后求出李老師所付的錢。
(3)195×(8÷5)=312(元),先求出8份報紙是5份報紙的幾倍,再把195元擴大相同的倍數后,結果就是李老師所付的錢。
3.嘗試用正比例知識解答
如果有學生想出用正比例方法解答,教師可以直接問:"你為什么要這樣解?"讓學生說出解題理由后再歸納其方法;如果學生沒想到用正比例知識解答,教師可作如下引導。
教師:除了這些解題方法外,我們還會用正比例方法解答嗎?請同學們用學過的有關正比例的知識思考:
(1)題中有哪兩種相關聯的量?
(2)題中什么量是不變的?一定的?
(3)題中這兩種相關聯的量是什么關系?
引導學生分析出:題中有所訂報紙份數和所付總錢數這兩個相關聯的量,它們的關系是所付總錢數÷所訂報紙份數=每份報紙單價,而題中的每份報紙單價一定,因此所付總錢數和所訂報紙份數成正比例關系。
隨學生的回答,教師可同步板書:
教師:運用我們前面所學的正比例知識,同學們會解答嗎?準備怎樣列比例式?
引導學生討論后回答,先要把李老師應付的錢數設為x元,再根據所付總錢數所訂份數=每份報紙單價的關系式,列式為1955=x8。
教師:同學們會計算嗎?把這個比例式計算出來。
學生解答。
教師:解答得對不對呢?你準備怎樣驗算?
學生討論驗算方法,教師引導:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它們的比值相等,與題意相符,所以所求的解是正確的。
三、課堂活動
1.出示教科書第49頁的例1圖和補充條件
竹竿長(m)26…
影子長(m)39…
教師:在這個表中有哪兩種量?它們相關聯嗎?它們成什么關系?你是根據什么判斷的?
教師出示問題:小明和小剛測量出旗桿影子長21m,請問旗桿有多高呢?根據剛才我們判斷的比例關系,你能列出等式嗎?
學生獨立思考解答,討論交流。
2.小結方法
教師:你覺得我們在用正比例知識解決上面兩個問題的時候,步驟是怎樣的?(初步歸納,不求學生強記,只求理解。)
(1)設所求問題為x。
(2)判斷題中的兩個相關聯的量是否成正比例關系。
(3)列出比例式。
(4)解比例,驗算,寫答語。
四、練習應用
完成練習十二的5,6,7題。
五、課堂小結
這節課我們學習了什么知識?你有什么收獲?
小學《正比例》的教學設計 篇4
一、教學目標
(1)知識目標:能根據正比例函數的圖像,觀察歸納出函數的性質;并會簡單應用。
(2)能力目標:逐步培養學生的觀察能力,概括的能力,通過教師指導發現知識,初步培養學生數形結合的思想以及由一般到特殊的數學思想;
(3)情感目標:激發學生學習數學的興趣和積極性,逐步培養學生實事求是的科學態度。
二、教學的重點和難點
教學重點:正比例函數的性質及其應用。
教學難點:發現正比例函數的性質
三、教學方法與學法指導教學方法:
引導發現法和直觀演示法,本節課的難點是發現正比例函數的性質,通過教師的引導,啟發調動學生的積極性,讓學生在課堂上多活動(畫圖)、多觀察(圖象),主動參與到整個教學活動中來,最后發現其性質。
學法指導:引導學生學會觀察、歸納的學習方法。
四、教具準備
電腦PPT,洋蔥學院電腦版
五、教學過程:
(一)溫故知新,引入課題
溫故:正比例函數的圖像是什么?
答:正比例函數圖像是經過原點(0,0)和點(1,k)的一條直線
(二):知新:
在兩個直角坐標系內,分別畫出下列每組函數的圖象像:y=xy=3xy=4xy=y=x②y=-xy=-3xy=-4xy=-y=-x
引導學生觀察圖像,看看每組直線分布的特征先讓學生在坐標紙上畫出上述函數的圖象,之后利用洋蔥學院播放《正比例函數的性質》,以動態的演示畫出函數圖象,吸引學生的學習興趣,讓他們能查漏補缺,找出自己所畫的圖象與視頻中的圖象有什么不同?
觀察圖像,思考問題:
1.圖像經過的象限與k的取值有何聯系?不夠明確。圖像經過的象限與k的取值(特別是符號)有何聯系?
2.對其中的某一個正比例函數圖像(例如y=3x),當x增大時,函數值y怎樣變化?x減小呢?是不是要提出減小?請斟酌。
3.你從中得出什么規律?
第一個問題:圖像經過的象限與k的取值有何聯系?
估計生:發現第一組的五條直線都經過第一象限和第三象限;而第二組的五條直線都經過第二和第四象限。
師:從比例系數來看呢,函數的比例系數和他們的圖像分布有什么聯系?用詞前后宜一致
估計生:第一組k>0,而第二組k<0。
師:很好,誰能把他們聯系一下?
估計生:當k>0時,函數圖像經過第一、三象限;當k<0時,函數圖像經過第二、四象限。
師:那么是不是對于所有的正比例函數的圖像都有:當k>0時,函數圖像經過第一、三象限;當k<0時,函數圖像經過第二、四象限呢?【電腦演示:任意正比例函數的圖像,當在一、三象限運動時,它的解析式中的k的值無論怎樣變化都是大于零的,反之,圖像在二、四象限運動時,k的值都小于零的。】(這個演示過程可以登錄xx這個網址,進行演示,讓學生更加直觀的觀察到k的正負對函數圖象的影響)
下面由老師來證明這個性質:(由觀察猜想到邏輯證明)
板書:當k>0時,函數圖像經過第一、三象限;當k<0時,函數圖像經過第二、四象限。
證明:當k>0時,若x>0,則kx>0,即y>0∴點(x,y)在第一象限
若x<0,則kx<0,即y<0∴點(x,y)在第三象限
當x=0時,則kx=0,即y=0∴點(x,y)即原點。
即函數圖像上所有的點(原點除外)都在一、三象限內,所以圖像經過一、三象限。同理,當k<0時,亦可證明函數圖像經過二、四象限。
我們看到:當k>0時,函數圖像的走向很像漢字筆畫里的“提”,當k<0時,走向是“捺”。這樣更形象,容易記憶。
PPT展示正比例函數的性質:當k>0時,函數圖像經過第一、三象限;當k<0時,函數圖像經過第二、四象限。
師:現在我們做個小練習,由正比例函數解析式(根據k的正負),來判斷其函數圖像的走向。
y=-xy=xy=xy=-xy=(a2+1)x(其中a是常數)y=(-a2-1)x(其中a是常數)
鼓勵學生踴躍搶答。
反過來,由函數圖象所在的象限,請你說出一個滿足條件的正比例函數解析式。好,我們來看下一個問題,(電腦重現第二問題:2、對其中的某一個正比例函數圖像,當x增大時,函數值y怎樣變化?x減小呢?)播放洋蔥視頻。
板書:當k>0時,自變量x逐漸增大時,函數值y也在逐漸增大;(即“提”的走向)當k<0時,自變量x逐漸增大時,函數值y反而減小。(即“捺”的走向)
師:小練習:由函數解析式,請你說出它的變化情況:y=3xy=-xy=xy=-y=(a2+1)x(其中a是常數)y=(-a2-1)x(其中a是常數)
鼓勵學生踴躍搶答。
第三個問題:你從中得出什么規律?
歸納總結(由學生回答)正比例函數y=kx(k≠0)的性質:
當k>0時,函數圖像經過第一、三象限;自變量x逐漸增大時,函數值y也在逐漸增大;(也就是“提”的走向)
當k<0時,函數圖像經過第二、四象限;自變量x逐漸增大時,函數值y反而減小。(也就是“捺”的走向)
歸納為一句話,正比例函數圖象的性質歸根結底看k的符號。
即:k>0提(一、三,增大);
k<0捺(二、四,減小)
(三)應用
1、正比例函數的解析式是___________,它的圖像一定經過___________。
2、y=-的圖像經過第___________象限。
3、已知ab<0,則函數y=x的圖象經過___________象限。
4、已知正比例函數y=(2a+1)x,若y的值隨x的增大而減小,求a的取值范圍。
5、當m為何值時,y=mxm2-3是正比例函數,且y隨x的增大而增大。
思考題:
①已知正比例函數y=(m+1)xm2+1,那么它的圖象經過哪些象限。
②分別說明下列各正比例函數,當m為何值時,y隨x的增大而增大,或y隨x的增大而減小?
a、y=(m2+1)x
b、y=m2x
c、y=(m+1)x
(四)小結這節課讓我們知道了……
以表格形式小結,可以整理知識點,形成網絡.有利于學生的記憶和內化,讓學生理清知識脈絡(先播放視頻,之后PPT總結本節課的重點)。
(五)作業89頁練習題
(六)課后反思
1.成功之處:本節課的重點是正比例函數的性質及其應用。難點是發現正比例函數的性質,通過教師的引導,洋蔥視頻的引導,啟發調動學生的積極性,讓學生自主的去分析發現函數的性質。教師的主導作用與學生主體地位達到了統一。使本節課的重點得到了突出,難點得到了突破;對學生學習中的情況進行了指導,作出了反饋;培養了學生利用數形結合的思想方法解決問題的能力;本節課的教學注重由傳授單一的知識技能,轉向為學生“自主探索發現總結規律”,使學生對新的知識與數學思想方法更容易理解和掌握。
2.不足之處:
(1)在探索正比例函數性質時,沒有預估到學生畫函數圖象費時太長,導致后面的教學過程比較緊張。
(2)在應用新知這一環節中對學生習題的反饋情況了解的不夠全面。
(3)為激發學生自主學習的興趣,教師的課堂語言應精煉。
3、改進措施:
(1)要充分的相信學生總結規律的能力。在學生總結規律過后給予肯定,不必加以過多的語言進行重復,給學生足夠的空間思考回答問題。
(2)在學生明確正比例函數的性質后,應用新知反饋練習時,可以采取課堂小測驗等方法進行,這樣教師可以更準確的掌握學生對新知識的掌握情況。
(3)在性質的發現總結過程中,應讓學生自己獨立完成,教師不必著急幫助總結,這樣可以更加集中學生的注意力,激發學習興趣。
在實際教學中為了體現學生學習的主體性,和教師教學的主導性,我花費了很多時間在學生的動手操作、小組討論上,但如何能更好的處理好學生探索過程中的引導和講解,還需要在實際教學中不斷地反思才能不斷地進步。
小學《正比例》的教學設計 篇5
教材分析:
正比例這個資料是學生在學習了比的好處、比的化簡與比的應用等資料的基礎上進行的。本課是有關比例知識的初步認識,結合具體情境,理解正比例的好處,決定兩個量是否成正比例。教材帶給了三個情境,其中一個是圖像,兩個是表格,讓學生在具體問題、具體情境中認識成正比例的量,初步感受生活中存在很多成正比例的'量;讓學生透過觀察、比較、分析、歸納等數學活動,自主發現正比例的變化規律,理解正比例的好處,會決定兩個量是否成正比例。
學情分析:
學生在學習乘法時,已經明白一個因數擴大幾倍,另一個因數不變,積就擴大幾倍這個規律,這個規律實際上就是正比例的一個變化規律,所以,學生對這個資料是有個初步的接觸。在這個資料的學習中,學生最容易掌握的是根據表格中的具體數據決定兩個量是否成正比例,最難掌握的是離開具體數據,根據文字敘述決定兩個量是否成正比例,個性是學生對學過的數量關系不熟悉時就更難了。
教學目標:
1、結合豐富的事例,認識正比例,理解正比例的好處,并初步感受生活中存在很多成正比例的量。
2、能根據正比例的好處,決定兩個相關聯的量是不是成正比例。
教學重點:
1、結合豐富的事例,認識正比例,理解正比例的好處。
2、能根據正比例的好處,決定兩個相關聯的量是不是成正比例。
教學難點:
能根據正比例的好處,決定兩個相關聯的量是不是成正比例。
教學用具:
課件
教學過程:
一、在情境中感受兩種相關聯的量之間的變化規律。
(一)情境一
1、一種汽車行駛的速度為90千米/小時。汽車行駛的時間和路程如下
2、請把下表填寫完整。
3、從表中你發現了什么規律?
說說你發現的規律:路程與時間的比值(速度)相同。
(二)情境二
1、一些人買一種蘋果,購買蘋果的質量和應付的錢數如下。
2、把表填寫完整。
3、從表中發現了什么規律?
應付的錢數與質量的比值(也就是單價)相同。
4、說說以上兩個例子有什么共同的特點。
小結:路程隨時間的變化而變化,在變化過程中路程與時間的比值相同;應付的錢數隨購買蘋果的質量的變化而變化,在變化過程中應付的錢數與質量的比值相同。
(三)情境三
1、觀察圖,分別把正方形的周長與邊長,面積與邊長的變化狀況填入表格中。請根據你的觀察,把數據填在表中。
2、填完表以后思考:這兩個表格中的變化狀況與上兩題的變化規律相同嗎?
說說從數據中發現了什么?
3、小結:正方形的周長和面積都隨邊長的增加而增加,在變化過程中,正方形的周長與邊長的比值必須都是4。正方形的面積一邊長的比是邊長,是一個不確定的值。
(四)歸納正比例的好處
1、時間增加,所走的路程也相應增加,而且路程與時間的比值(速度)相同。那么我們說路程和時間成正比例。
2、購買蘋果應付的錢數與質量有什么關系?
3、正方形的周長與邊長有什么關系?
4、觀察思考成正比例的量有什么特征?
一個量變化,另一個量也隨著變化,并且這兩個量的比值相同。
5、小結
兩種相關聯的量,一種量擴大,另一種量也隨著擴大,一種量縮小,另一種量也隨著縮小,并且這兩種量中相對應的兩個數的比值(也就是商)必須,這兩種量就是成正比例的量,它們的關系就是正比例關系。
二、鞏固練習
1、想一想
正方形的周長與邊長成正比例嗎?面積與邊長呢?為什么?
師小結:
(1)正方形的周長隨邊長的變化而變化,并且周長與邊長的比值都是4,所以正方形的周長與邊長成正比例。
請你也試著說一說。
(2)正方形的面積雖然也隨邊長的變化而變化,但面積與邊長的比值是一個變化的值,所以正方形的面積和邊長不成正比例。
請生用自己的語言說一說。
2、小明和爸爸的年齡變化狀況如下
小明的年齡/歲67891011
爸爸的年齡/歲3233
(1)把表填寫完整。
(2)父子的年齡成正比例嗎?為什么?
(3)爸爸的年齡=小明的年齡+26。雖然小明歲數增加,爸爸歲數也增加,但是小明歲數與爸爸歲數的比值隨著時間發生變化,不是一個確定的值,所以父子的年齡不成正比例。
與同桌交流,再群眾匯報
三、全課總結:
說說你在這節課中學到了什么知識?有什么不明白的地方?
板書設計:
正比例
路程÷時間=速度(必須)
總價÷數量=單價(必須)
正方形的周長÷邊長=4(必須)
兩種相關聯的量,一種量擴大(或縮小),另一種量也隨著擴大(或縮小),并且這兩種量的比值(也就是商)必須,這兩種量就成正比例。
小學《正比例》的教學設計 篇6
教學內容:
教科書第62—63頁的例1、“試一試”和“練一練”,第66頁練習十三的第1—3題。
教學目標:
1、使學生經歷從具體實例中認識成正比例的量的過程,初步理解正比例的意義,學會根據正比例的意義判斷兩種相關聯的量是不是成正比例。
2、使學生在認識成正比例的量的過程中,初步體會數量之間相依互變的關系,感受有效表示數量關系及其變化規律的不同數學模型,進一步培養觀察能力和發現規律的能力。
3、使學生進一步體會數學與日常生活的密切聯系,增強從生活現象中探索數學知識和規律的意識。
教學重難點:
理解相關聯的兩個量及正比例的意義,并能正確判斷兩種量是否成正比例
學情分析
1.學生在學習本單元之前已經學習了比和比例的有關知識,會解決按比例分配的簡單數學問題。
2.有一些樸素的正、反比例概念。學生在中已經積累了一些這方面的經驗,比如坐車時間越長,行走的距離就越遠等。
多媒體運用:
ppt課件
教學過程:
一、教學例1
1、談話引出例1的表格,讓學生說一說表中列出了哪兩種量。
2、引導學生觀察表中的數據,說一說這兩種量的數值分別是怎樣變化的。
可先讓同桌相互說一說,再組織全班交流。通過交流,使學生初步感知兩種量的變化情況:行駛的時間擴大,路程也隨著擴大;行駛的時間縮小,路程也隨著縮小。
小結:路程和時間是兩種相關聯的量,時間變化,路程也隨著變化。
3、引導學生進一步觀察表中的數據,找一找這兩種量的變化的規律,啟發學生從“變化”中去尋找“不變”。
學生可能會從不同的角度去尋找規律。
教師可根據交流的實際情況,及時引導學生通過計算確認這一規律,并有意識地從后一種角度突出這一規律。
如果學生發現不了上述規律,可引導學生寫出幾組相對應的路程與時間的比,并求出比值。
4、根據上面發現的規律,進一步啟發學生思考:這個比值表示什么?上面的規律能不能用一個式子來表示?
根據學生的回答,教師板書關系式:路程時間=速度(一定)
5、教師對兩種量之間的關系作具體說明:路程和時間是兩種相關聯的量,時間變化,路程也隨著變化。當路程和對應時間的比的比值總是一定,也就是速度一定時,行駛的路程和時間成正比例,行駛的路程和時間是成正比例的量。
(板書:路程和時間成正比例)
二、教學“試一試”
1、要求學生根據表中的已知條件先把表格填寫完整。
2、根據表中的數據,依次討論表格下面的四個問題,并仿照例1作適當的板書。
3、讓學生根據板書完整地說一說鉛筆的總價和數量成什么關系。
三、抽象表達正比例的意義
1、引導學生觀察上面的兩個例子,說說它們有什么共同點。
2、啟發學生思考:如果用字母x和y分別表示兩種相關聯的量,用k表示它們的比值,正比例關系可以用怎樣的式子來表示?
根據學生的回答,板書關系式。
四、鞏固練習
1、完成第63頁的“練一練”。
先讓學生獨立思考并作出判斷,再要求說明判斷理由。
2、做練習十三第1~3題。
第1題讓學生按題目要求先各自算一算、想一想,再組織討論和交流。
第2題先讓學生獨立進行判斷,再指名說判斷的理由。
第3題要先讓學生說說題目要求我們把已知的正方形按怎樣的比放大,放大后正方形的邊長各是幾厘米,再讓學生在圖上畫一畫。
填好表格后,組織學生討論,明確:只有當兩種相關聯的量的比值一定時,它們才能成正比例。
五、全課小結
這節課你學會了什么?通過這節課的學習,你還有哪些收獲?
小學《正比例》的教學設計 篇7
教學目標:
1.使學生經歷從具體實例中認識成正比例的量的過程,初步理解正比例的意義,學會根據正比例的意義判斷兩種相關聯的量是不是成正比例。
2.讓學生在認識成正比例的量的過程中,初步體會數量之間相依互變的關系,進一步培養觀察能力和發現規律的能力。
教學重點:
結合實際情境認識成正比例的量的特點,加深對正比例意義的理解。
教學難點:
能跟據正比例的意義判斷兩種相關聯的量是否成正比例的量。
教學準備:
教學過程:
一、導入
談話:同學們購物問題中有單價、數量、總價,你知道它們之間的關系嗎?
學生討論,反饋。
[設計意圖:本環節結合生活中的實例,引導學生體會數量之間的關系。]
二、教學例1
1、出示例1的表格。
提問:表中列出了哪兩種量?(板書:時間和路程)
觀察表中的數據,哪一種量的變化引起了另一種量的變化?
指名回答。
談話:時間變化,路程也隨著變化,我們就說,路程和時間是兩種相關聯的量。(板書:路程和時間是兩種相關聯的量。)
為什么說路程和時間是兩種相關聯的量?
學生交流。(有的學生可能發現一種量擴大到原來的幾倍,另一種量也隨著擴大到原來的幾倍;有的學生可能會發現一種量縮小到原來的幾分之幾,另一種量也隨著縮小到原來的幾分之幾。)
2、談話:觀察表中的數據,這兩種量在變化中有沒有什么不變的規律呢?
學生交流,教師引導:請寫出幾組對應的路程和時間的比,并求出比值,根據學生回答板書:=80=80=80……
提問:你能用一個式子來表示上面的規律嗎?
根據學生回答,板書:=速度(一定)
3、小結:路程和時間是兩種相關聯的量,時間變化,路程也隨著變化。當路程和對應時間的比的比值一定(也就是速度一定)時,我們就說行駛的路程和時間成正比例,行駛的路程和時間成正比例的量。(板書:正比例的意義)
[設計意圖:正比例的知識在日常生活中有著廣泛的應用。通過學習這部分知識,可以幫助學生加深對學過的數量關系的認識,使學生學會從變量的角度來認識兩個量之間的關系,把握正比例概念的內涵和本質。]
三、教學“試一試”
1、出示“試一試”,學生自由讀題。
2、讓學生根據已知條件把表格填寫完整。
3、請學生根據表中數據,先嘗試獨立完成表格下面的四個問題,再和同桌交流。
4、學生交流中,明確:總價和數量是相關聯的量,=單價(一定),總價和數量成正比例。
[設計意圖:讓學生在認識成正比例的量的過程中,體會數量之間相依互變的關系,感受有效表示數量關系及其變化規律的不同數學模型,進一步培養觀察能力和發現規律的能力。]
四、歸納字母公式
1、比較例題和“試一試”的相同點。
提問:觀察上面的兩個例子,它們有什么相同的地方呢?
(1)都有兩種相關聯的量;
(2)兩種相關聯的量相對應的兩個數的比值總是一定的;
(3)兩種量都成正比例。
2、如果用字母和分別表示兩種相關聯的量,用表示它們的比值,正比例關系可以用怎樣的式子來表示呢?
根據學生的回答,板書:=(一定)
交流:和表示兩種相關聯的量,比的比值一定,我們就說和成正比例。
[設計意圖:文似看山,學如登高。結合實例認識成正比例的量的特點,加深對正比例意義的理解。]
五、鞏固練習
1、完成第63頁“練一練”。
學生獨立思考并作出判斷,要用完整的語言說出判斷的理由。
2、完成練習十三第1題。
(1)讓學生按題目要求先各自算一算、想一想。
(2)全班交流,讓學生說說為什么碾米機的工作時間和碾米數量成正比例,引導學生完整地說出判斷的思考過程。
3、完成練習十三第2題。
(1)讓學生獨立判斷,并指名說說判斷的理由。
(2)注意引導學生有條理地說明判斷的思考過程。
4、完成練習十三第3題。
(1)先讓學生說說題目中將圖中的正方形按怎樣的比放大,放大后的正方形的邊長各是幾厘米?
(2)再讓學生在書上畫出放大后的圖形,并算出每個圖形的周長和面積,并填在表中。
(3)討論表格下面的兩個問題。通過討論使學生明確:只有當兩種相關聯的量的比值一定時,它們才成正比例。
[設計意圖:按照新課改的理念,教學中創設開放的問題情境和寬松的學習氛圍,給學生充分思考、交流的空間,進一步鞏固對正比例意義的理解。]
六、全課總結
這節課你學會了什么?通過這節課的學習,你還有哪些收獲?
[設計意圖:引導學生進行課堂反思,進一步理解成正比例的量,為后面的學習打基礎。]
七、作業
完成《練習與測試》相關作業。
板書設計
正比例的意義
時間和路程路程和時間是兩種相關聯的量。
=80=80=80……
=速度(一定)
=(一定)
小學《正比例》的教學設計 篇8
【教學內容】
《義教課標實驗教科書數學》(人教版)六年級下冊第39-41頁成正比例的量。
【教學目標】
1、使學生理解正比例的意義,會正確判斷成正比例的量。
2、使學生了解表示成正比例的量的圖像特征,并能根據圖像解決有關簡單問題。
【教學重點】
正比例的意義。
【教學難點】
正確判斷兩個量是否成正比例的關系。
【教學準備】
多媒體課件
【自學內容】
見預習作業
【教學預設】
一、自學反饋
1、揭題:今天這節課,我們一起學習成正比例的量。板書:成正比例的量
2、通過自學,你能說說什么叫做成正比例的量?
3、你是怎樣理解成正比例的量的含義的?
4、在現實生活中,我們常常遇到兩種相關聯的量的變化情況,其中一種量變化,另一種量也隨著變化,你以舉出一些這樣的例子嗎?
在教師的引導下,學生會舉出一些簡單的例子。
二、關鍵點撥
1、正比例的意義
(1)出示表格。
高度/㎝24681012
體積/㎝350100150200250300
底面積/㎝2
問:你有什么發現?
學生不難發現:杯子的底面積不變,是25平方厘米。
板書:
教師:體積與高度的比值一定。
(2)說明正比例的意義。
因為杯子的底面積一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應增加,水的高度降低,體積也相應減少,而且水的體積和高度的比值一定。
板書出示:像這樣,兩種相關聯的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對應的兩個數的比值一定,這兩種理就叫做成正比例的量,它們的關系叫做正比例關系。
(3)用字母表示。
如果用字母X和Y表示兩種相關聯的量,用K表示它們的比值(一定),比例關系可以用正的式子表示:
2、判斷正比例關系:下面哪些是成正比例的兩個量?
長方形的寬一定,面積和長成正比例。
每袋牛奶質量一定,牛奶袋數和總質量成正比例。
衣服的單價一不定期,購買衣服的數量和應付錢數成正比例。
地磚的面積一定,教室地板面積和地磚塊數成正比例。
三、鞏固練習
1、學生獨立完成例2后反饋交流。
(1)從圖中你發現了什么?
這些點都在同一條直線上。
(2)看圖回答問題。
①如果杯中水的高度是7㎝,那么水的體積是多少?
②體積是225㎝3的水,杯里水面高度是多少?
③杯中水的高度是14㎝,那么水的體積是多少?描出這一對應的點是否在直線上?
(3)你還能提出什么問題?有什么體會?
2、做一做。
過程要求:
(1)讀一讀表中的數據,寫出幾組路程和時間的比,說一說比值表示什么?
(2)表中的路程和時間成正比例嗎?為什么?
(3)在圖中描出表示路程和時間的點,并連接起來。有什么發現?所描的點在一條直線上。
(4)行駛120KM大約要用多少時間?
(5)你還能提出什么問題?
3、獨立完成第44頁練習七第1、2題。
4、判斷并說明理由。
(1)圓的周長和直徑成正比例。
(2)圓的周長和半徑成正比例。
(3)圓的面積和半徑成正比例。
四、分享收獲暢談感想
這節課,你有什么收獲?聽課隨想
小學《正比例》的教學設計 篇9
教學內容:
教科書第59頁例5以及相關練習題。
教學目標:
1、使學生能正確判斷題中涉及的量是否成正比例關系。
2、進一步鞏固正比例的意義,掌握用正比例方法解應用題的方法和步驟,能正確地用正比例的方法來解答應用題。
3、培養學生運用所學知識解決實際問題的能力,培養學生勇于探索精神。
4、在成功解決生活中的實際問題中體會數學的價值。
教學重點:
利用已學的正比例的意義,通過自己探索掌握解答正比例應用題的方法。
教學難點:
正確判斷兩個量是否成正比例的關系,找出相等關系并列出含有未知數的等式。
教具準備:
小黑板
教學過程:
一、復習鋪墊,激發興趣。
1、填空并說明理由。
(1)速度一定,路程和時間成( )比例。
(2)單價一定,總價與數量成( )比例。
(3)每塊地磚的大小一定,磚的塊數和所鋪的總面積成( )比例。
【設計意圖:通過復習,讓學生溫故而知新,為學習下面的內容鋪墊。】
3、提出問題:老師請你用一把米尺去測量學校旗桿的高度,你能行嗎?
生1:把旗桿放下量。
生2:爬上去量。
生3:利用影子的長度量。(如果沒有學生說教師可做適當引導。)
師:相信通過這一節課的學習,你一定會找到解決的方法的。
【設計意圖:激起學生學習這習欲望,欲望是產生動機的催化劑。】
二、揭示課題、探索新知。
1、小黑板出示例5
張大媽:我們家上個月用了8噸水,水費是12.8元。
李奶奶:我們家用了10噸水,上個月的水費是多少錢?
思考:題中告訴了我們哪些信息?要解決什么問題?
師:你能利用數學知識幫李奶奶算出上個月的水費嗎?
(1) 學生自己解答。
(2) 交流解答方法,并說說自己想法。
算式是:12.8÷8×10
=1.6×10
=16(元)。(先算出每噸水的價錢,再算出10噸水需要多少錢。)
(也可以先求出用水量的倍數關系再求總價。)
10÷8×12.8
=1.25×12.8
=16(元)
【設計意圖:用以往學過的方法解決例題,有助于從舊知跳躍到新知的學習,同時有利于用比例解決問題的檢驗,幫助學生在后面的學習中構建知識結構。】
師:像這樣的問題也可以用比例的知識來解決,我們今天就來學習用比例的知識進行解答。(板書課題:用比例解決問題)
(3)小黑板出示以下問題讓學生思考和討論:
1)題目中相關聯的兩種量是( )和( ) ,說說變化情況。
2)( )一定,( )和( )成( )比例關系。
3)用關系式表示是( )
(4)集體交流、反饋
板書: 水費 用水噸數
12.8元 8噸
?元 10噸
水費:用水噸數 = 每噸水的價錢(一定)
師概括:因為水價一定,所以水費和用水的噸數成正比例。也就是說,兩家的水費和用水的噸數的比值是相等的。
(5)根據正比例的意義列出比例式(方程):
學生獨立完成,教師巡視。
反饋學生解題情況。
8
12.8
10
χ
解:設李奶奶家上個月的水費是χ元。
12.8 :8 =χ:10 或 =
8χ=12.8×10 8χ= 12.8×10
χ=128÷8 χ=128÷8
χ= 16 χ= 16
答:李奶奶家上個月的水費是16元。
【設計意圖:在教師引導下,學生通過合作、交流從而解決問題,能使他們增強學習的信心、能給他們自信。在交流中,讓學生充分地表達自己的見解,培養學生的辯證思維能力和口語交際能力。】
(6)將答案代入到比例式中進行檢驗。
你認為李奶奶用了10噸水交16元錢,這個答案符合實際嗎?你是怎么判斷的?
生交流,匯報。
2、變式練習。
剛才我們用歸一法和比例法幫李奶奶解決了水費的問題,同學們真不簡單,瞧!王大爺又遇到了什么問題呢?出現下面的練習:
張大媽:我們家上個月用了8噸水,水費是12.8元。王大爺家上個月的水費是19.2元,他們家上個月用了多少噸水?
(1)比較一下改編后的題和例5有什么聯系和區別?
(2)學生獨立用比例的知識解決這個問題。指名板演。(教師巡視)
(3)集體訂正,學生說一說你是怎么想的?
3、概括總結
師:剛才我們用正比例知識幫李奶奶和王大爺解決了生活中的水費問題,請大家回憶一下解題思路,再想一想用比例解決問題的思考過程是怎樣的?
學生討論交流,匯報。
師總結:
1、分析找出題目中相關聯的兩種量。
2、判斷他們是否是正比例關系。
3、根據正比例的意義列出比例。
4、最后解比例。
5、檢驗作答。
【設計意圖:歸納解題的策略,有助于提高學生解決問題的能力。】
三、鞏固練習,形成技能。
1、解決課前提出的問題。小明在解決這一問題時,采集到了下面信息:在下午1時旗桿旁的一棵高2米的小樹影長1.5米,旗桿影長9米,你能根據這些信息解決求旗桿高嗎
師提醒:同一時間、同一地點的身高和影長成正比例。
學生讀題后,先思考以下三個問題。
① 題中已知哪兩種相關聯的量?
②它們成什么比例關系?你是根據什么判斷的?
② 你能列出等式嗎?
生獨立完成,并匯報解答過程。
2、教科書P60“做一做”。
生獨立解答。
【設計意圖:通過練習的鞏固,提高學生解決問題的能力。同時從學生的生活實際入手,引導學生把所學的知識運用與生活實踐,從中體會所學知識的生活價值。】
四、全課總結
通過今天的學習,你有什么收獲?
五、布置作業
練習九第3、5題。
【小學《正比例》的教學設計】相關文章:
正比例教學設計01-12
《正比例》教學設計11-02
《正比例》教學設計07-15
正比例教學設計模板04-11
《正比例》的教學設計范文05-11
有關正比例的意義教學設計01-14
數學《正比例的意義》教學設計03-06
正比例的意義數學教學設計03-06
正比例的意義教學設計及反思02-22