两个人做人爱视频免费,97久久精品人人搡人妻人人玩,欧洲精品码一区二区三区,999zyz玖玖资源站永久

我要投稿 投訴建議

《數學之美》讀書筆記

時間:2025-02-11 12:14:49 敏冰 讀書筆記 我要投稿
  • 相關推薦

《數學之美》讀書筆記(通用11篇)

  當認真看完一本名著后,想必你有不少可以分享的東西,這時就有必須要寫一篇讀書筆記了!那么你真的懂得怎么寫讀書筆記嗎?下面是小編精心整理的《數學之美》讀書筆記,供大家參考借鑒,希望可以幫助到有需要的朋友。

《數學之美》讀書筆記(通用11篇)

  《數學之美》讀書筆記 1

  《數學之美》是一本領域相關的數學概念書,生動形象地講解了關于數據挖掘、文本檢索等方面的基礎知識,可以作為數據挖掘、文本檢索的入門普及書。另外,就像作者吳軍老師提到的,關鍵是要從中學到道----解決問題的方法,而不僅僅是術。書中也啟發式的引導讀者形成自己解決問題的道。

  下面記錄一下自己讀這本書的一些感想:

  第一章《文字和語言vs數字和信息》:文字和語言中天然蘊藏著一些數學思想,數學可能不僅僅的是一門非常理科的知識,也是一種藝術。另外,遇到一個復雜的問題時,可能生活中的一些常識,一些簡單的思想會給你帶來解決問題的靈感。

  第二章《自然語言處理----從規則到統計》:試圖模擬人腦處理語言的模式,基于語法規則,詞性等進行語法分析、語義分析的自然語言處理有著很大的復雜度,而基于統計的語言模型很好的解決了自然語言處理的諸多難題。人們認識這個過程,找到統計的方法經歷了20多年,非常慶幸我們的前輩已經幫我們找到了正確的方法,不用我們再去苦苦摸索。另外,這也說明在發現真理的過程中是充滿坎坷的,感謝那些曾經奉獻了青春的科學家。自己以后遇到問題也不能輕易放棄,真正的成長是在解決問題的過程中。事情不可能一帆風順的,這是自然界的普遍真理吧!

  第三章《統計語言模型》:自然語言的處理找到了一種合適的方法---基于統計的模型,概率論的知識開始發揮作用。二元模型、三元模型、多元模型,模型元數越多,計算量越大,簡單實用就是最好的。對于某些不出現或出現次數很少的詞,會有零概率問題,這是就要找到一數學方法給它一個很小的概率。以前學概率論的時候覺的沒什么用,現在開始發現這些知識可能就是你以后解決問題的利器。最后引用作者本章的最后一句話:數學的魅力就在于將復雜的問題簡單化。

  第四章《談談中文分詞》:中文分詞是將一句話分成一些詞,這是以后進一步處理的基礎。從開始的查字典到后來基于統計語言模型的分詞,如今的中文分詞算是一個已經解決的問題。然而,針對不同的系統、不同的要求,分詞的粒度和方法也不盡相同,還是針對具體的問題,提出針對該問題最好的方法。沒有什么是絕對的,掌握其中的道才是核心。

  第五章《隱馬爾科夫模型》:隱馬爾科夫模型和概率論里面的馬爾科夫鏈相似,就是該時刻的狀態僅與前面某幾個時刻的狀態有關。基于大量數據訓練出相應的隱馬爾科夫模型,就可以解決好多機器學習的問題,訓練中會涉及到一些經典的算法(維特比算法等)。關于這個模型,沒有實際實現過,所以感覺好陌生,只是知道了些概率論講過的原理而已。

  第六章《信息的度量和作用》:信息論給出了信息的度量,它是基于概率的,概率越小,其不確定性越大,信息量就越大。引入信息量就可以消除系統的不確定性,同理自然語言處理的大量問題就是找相關的信息。信息熵的物理含義是對一個信息系統不確定性的度量,這一點與熱力學中的熵概念相同,看似不同的學科之間也會有著很強的相似性。事務之間是存在聯系的,要學會借鑒其他知識。

  第七章《賈里尼克和現代語言處理》:賈里尼克是為世界級的大師,不僅在于他的學術成就,更在于他的風范。賈里尼克教授少年坎坷,也并非開始就投身到自然語言方面的研究,關鍵是他的思想和他的道。賈里克尼教授治學嚴謹、用心對待自己的學生,對于學生的教導,教授告訴你最多的是“什么方法不好”,這很像聽到的一句話“我不贊同你,但我支持你”。賈里克尼教授一生專注學習,最后在辦公桌前過世了。讀了這章我總結出的一句話是“思想決定一個人的高度”。

  在這章中對于少年時的教育,以下幾點值得借鑒:

  1、少年時期其實沒有必要花那么多時間讀書,他們的社會經驗、生活能力以及在那時樹立起的志向將幫助他們一生。

  2、中學時花大量時間學會的內容,在大學用非常短的時間就可以讀完,因為在大學階段,人的理解力要強很多。

  3、學習(和教育)是一個人一輩子的過程。

  4、書本的內容可以早學,也可以晚學,但是錯過了成長階段卻是無法補回來的。

  第八章《簡單之美----布爾代數和搜索引擎的索引》:布爾是19世紀英國的一位中學教師,但他的公開身份是啤酒商,提出好的思想的'人不一定是大師。簡單的建立索引可以根據一個詞是否在一個網頁中出現而設置為0和1,為了適應索引訪問的速度、附加的信息、更新要快速,改進了索引的建立,但原理上依然簡單,等價于布爾運算。牛頓的一句話“(人們)發覺真理在形式上從來是簡單的,而不是復雜和含混的”。做好搜索,最基本的要求是每天分析10-20個不好的搜索結果,積累一段時間才有感覺。有時候,學習、處理問題,可以從不好的方面入手,效果可能更好。

  第九章《圖論和網絡爬蟲》:圖的遍歷分為“廣度優先搜索(Breadth-FirstSearch,簡稱BFS)”和“深度優先搜索(Depth-FirstSearch,簡稱DFS)。互聯網上有幾百億的網頁,需要大量的服務器用來下載網頁,需要協調這些服務器的任務,這就是網絡設計和程序設計的藝術了。另外對于簡單的網頁,沒必要下載。還需要存儲一張哈希表來記錄哪些網頁已經存儲過(如果記錄每個網頁的url,數量太多,這里可以用后面提到的信息指紋,只需要一個很多位的數字即可),避免重復下載。另外,在圖論出現的很長一段時間里,實際需求的圖只有幾千個節點,那時圖的遍歷很簡單,人們都沒有怎么專門研究這個問題,隨著互聯網的出現,圖的遍歷一下子有了用武之地,很多數學方法就是這樣,看上去沒有什么用途,等到具體的應用出來了一下子開始派上大用場了,這可能就是世界上很多人畢生研究數學的原因吧。一個系統看似整體簡單,但里面的每個東西都可能是一個復雜的東西,需要很好的設計。

  第十章《PageRank----Google的民主表決式網頁排名技術》:搜索返回了成千上萬條結果,如何為搜索結果排名?這取決與兩組信息:關于網頁的質量信息以及這個查詢和每個網頁的相關性信息。PageRank算法來衡量一個網頁的質量,該算法的思想是如果一個網頁被很多其他網頁所鏈接,說明它收到普遍的承認和信賴,那么它的排名就高。谷歌的創始人佩奇和布林提出了該算法并用迭代的方法解決了這個問題。PageRank在Google所有的算法中依然是至關重要的。該算法并不難,可是當時只有佩奇和布林想到了,為什么呢?

  第十一章《如何確定網頁和查詢的相關性》:構建一個搜索引擎的四個方面:如何自動下載網頁、如何建立索引、如何衡量網頁的質量以及確定一個網頁和某個查詢的相關性。搜索關鍵詞權重的科學度量TF—IDF,TF衡量一個詞在一個網頁中的權重,即詞頻。IDF衡量一個詞本身的權重,對主題的預測能力。一個查詢和該網頁的相關性公式由詞頻的簡單求和變成了加權求和,即TF1*IDF1+TF2*IDF2+...+TFN*IDFN。看似復雜的搜索引擎,里面的原理竟是這么簡單!

  第十二章《地圖和本地搜索的最基本技術——有限狀態機和動態規劃》:地址的解析依靠有限狀態機,當用戶輸入的地址不太標準或有錯別字時,希望進行模糊匹配,提出了一種基于概率的有限狀態機。通用的有限狀態機的程序不是很好寫,要求很高,建議直接采用開源的代碼。圖論中的動態規劃問題可以用來解決兩點間的最短路徑問題,可以將一個“尋找全程最短路線”的問題,分解成一個個尋找局部最短路線的小問題。有限狀態機和動態規劃問題需要看相關的算法講解,才能深入理解,目前對其并未完全理解。

  第十三章《GoogleAK-47的設計者——阿米特·辛格博士》:辛格堅持選擇簡單方案的一個原因是容易解釋每一個步驟和方法背后的道理,這樣不僅便于出了問題時查錯,而且容易找到今后改進的目標。辛格要求對于搜索質量的改進方法都要能說清楚理由,說不清楚理由的改進即使看上去有效也不會采用,因為這樣將來可能是個隱患。辛格非常鼓勵年輕人要不怕失敗,大膽嘗試。遵循簡單的哲學。

  第十四章《余弦定理和新聞的分類》:將新聞根據詞的TF-IDF值組成新聞的特征向量,然后根據向量之間的余弦距離衡量兩個特征之間的相似度,將新聞自動聚類。另外根據詞的不同位置,權重應該不同,比如標題的詞權重明顯應該大點。大數據量的余弦計算也要考慮很多簡化算法。

  第十五章《矩陣運算和文本處理中的兩個分類問題》:將大量的文本表示成文本和詞匯的矩陣,然后對該矩陣進行奇異值SVD分解,可以得到隱含在其中的一些信息。計算余弦相似度的一次迭代時間和奇異值分解的時間復雜度在一個數量級,但計算余弦相似度需要多次迭代。另外,奇異值分解的一個問題是存儲量大,而余弦定理的聚類則不需要。奇異值分解得到的結果略顯粗糙,實際工作中一般先進行奇異值分解得到粗分類結果,在利用余弦計算得到比較精確地結果。我覺得這章講的SVD有些地方不是很清楚,已向吳軍老師請教了,等待回信。

  第十六章《信息指紋及其應用》:信息指紋可以作為信息的唯一標識。有很多信息指紋的產生方法,互聯網加密要使用基于加密的偽隨機數產生器,常用的算法有MD5或者SHA-1等標準。信息指紋可以用來判定集合相同或基本相同。YouTobe就用信息指紋來反盜版。128位的指紋,1.8*10^19次才可能重復一次,所以重復的可能性幾乎為0。判定集合是否相同,從簡單的逐個比對到利用信息指紋,復雜度降低了很多很多。啟發我們有時候要用變通的思想來解決問題。

  第十七章《由電視劇《暗算》所想到的——談談密碼學的數學原理》:RSA加密算法,有兩個完全不同的鑰匙,一個用于加密,一個用于解密。該算法里面蘊含著簡單但不好理解的數學思想。信息論在密碼設計中的應用:當密碼之間分布均勻并且統計獨立時,提供的信息最少。均勻分布使得敵人無從統計,而統計獨立能保證敵人即使知道了加密算法,也不能破譯另一段密碼。

  第十八章《閃光的不一定是金子——談談搜索引擎反作弊問題》:把搜索反作弊看成是通信模型,作弊當做是加入的噪聲,解決噪聲的方法:從信息源出發,增強排序算法的抗干擾能力;過濾掉噪聲,還原信息。只要噪聲不是完全隨機并且前后有相關性,就可以檢測到并消除。作弊者的方法不可能是隨機的,且不可能一天換一種方法,及作弊是時間相關的。因此在搜集一段時間的作弊信息后,就可以將作弊者抓出來,還原原有的排名。一般作弊都是針對市場份額較大的搜索引擎做的,因此,一個小的搜索引擎作弊少,并不一定是它的反作弊技術好,而是到它那里作弊的人少。

  第十九章《談談數學模型的重要性》:早期的行星運行模型用大圓套小圓的方法,精確地計算出了所有行星運行的軌跡。但其實模型就是簡單的橢圓而已。一個正確的數學模型應該在形式上是簡單的;一個正確的模型可能開始還不如一個精雕細琢過的錯誤模型來的準確,但是,如果我們認定大方向是對的,就應該堅持下去;大量準備的數據對研發很重要;正確的模型可能受到噪聲干擾,而顯得不準確,這是不應該用一種湊合的修正方法來彌補它,要找到噪聲的根源,這也許能通往重大的發現。

  第二十章《不要把雞蛋放在一個籃子里——談談最大熵模型》:對一個隨機事件預測時,當各種情況概率相等時,信息熵達到最大,不確定性最大,預測的風險最小。最大熵模型的訓練非常復雜,需要時查看資料做進一步的理解。

  第二十一章《拼音輸入法的數學原理》:輸入法經歷了以自然音節編碼,到偏旁筆畫拆字輸入,再回歸自然音節輸入的過程。任何事物的發展,螺旋式的回歸不是簡單的重復,而是一種升華。輸入法的速度取決于編碼的場地*尋找這個鍵的時間。傳統的雙拼,記住編碼太難,尋找每個鍵的時間太長,并且增加了編碼上的歧義。根據香農第一定理可以計算理論上每個漢字的平均最短碼長。全拼不僅編碼平均長度較少,而且根據上下文的語言模型可以很好的解決歧義問題。利用統計語言模型可是實現拼音轉漢字的有效算法,而且可以轉換為動態規劃求最短路徑問題。如今各家輸入法的效率基本在一個量級,進一步提升的關鍵就在于建立更好的語言模型。可以根據每個用戶建立個性化的語言模型。輸入的過程本身就是人和計算機的通信,好的輸入法會自覺或者不自覺的的遵循通信的數學模型。要做出最有效的輸入法,應該自覺使用信息論做指導。

  第二十二章《自然語言處理的教父馬庫斯和他的優秀弟子們》:將自然語言處理從基于規則到基于統計,貢獻最大的兩個人,一個是前面介紹的賈里尼克教授,他是一個開創性任務;另一個是將這個方法發揚光大的米奇·馬庫斯。馬庫斯的貢獻在于建立了造福全世界研究者的賓夕法尼亞大學LDC語料庫以及他的眾多優秀弟子。馬庫斯的影響力很大程度上是靠他的弟子傳播出去的。馬庫斯教授有很多值得欽佩的地方:給予他的博士研究生自己感興趣的課題的自由,高屋建瓴,給學生關鍵的指導;寬松的管理方式,培養各有特點的年輕學者;是一個有著遠見卓識的管理者。他的學生為人做事風格迥異,但都年輕有為,例如追求完美的邁克爾·柯林斯和尋求簡單美的艾克爾·布萊爾。大師之所以能成為大師,肯定有著一些優秀的品質和追求。

  第二十三章《布隆過濾器》:判斷一個元素是否在一個集合當中時,用到了布隆過濾器,存儲量小而且計算快速。其原理是:建立一個很長的二進制,將每個元素通過隨機數產生器產生一些信息指紋,再將這些信息指紋映射到一些自然數上,最后在建立的那個很長的二進制上把這些自然數的位置都置為1。布隆過濾器的不足之處是它可能把不在集合中的元素錯判成集合中的元素,但在某些條件下這個概率是很小的,補救措施是可以建立一個小的白名單,存儲那些可能誤判的元素。布隆過濾器背后的數學原理在于完全隨機的數字其沖突的可能性很小,可以用很少的空間存儲大量的信息,并且由于只進行簡單的算術運算,因此速度非常快。《編程珠璣》中第一章的那個例子就是布隆過濾器的思想。開闊思維,尋找更好更簡單的方法。

  第二十四章《馬爾科夫鏈的擴展——貝葉斯網絡》:貝葉斯網絡是馬爾科夫鏈的擴展,由簡單的線性鏈式關系擴展為網絡的關系,但貝葉斯網絡仍然假設每一個狀態只與它直接相連的狀態相關。確定貝葉斯網絡的拓撲結構和各個狀態之間相關的概率也需要訓練。在詞分類中,可以建立文章、主題和關鍵詞的貝葉斯網絡,用來得到詞的分類。貝葉斯網絡的訓練包括確定拓撲結構和轉移概率,比較復雜,后者可以參考最大熵訓練的方法。貝葉斯網絡導出的模型是非常復雜的。

  第二十五章《條件隨機場和句法分析》:句法分析是分析出一個句子的句子結構,對于不規則的句子,對其進行深入的分析是很復雜的,而淺層的句法分析在很多時候已經可以滿足要求了。條件隨機場就是進行淺層句法分析的有效的數學模型。條件隨機場與貝葉斯網絡很像,不用之處在于,條件隨機場是無向圖,而貝葉斯網絡是有向圖。條件隨機場的訓練很復雜,簡化之后可以參考最大熵訓練的方法。對于條件隨機場的詳細參數及原理還不理解。

  第二十六章《維特比和他的維特比算法》:維特比算法是一個動態規劃算法,凡是使用隱馬爾科夫模型描述的問題都可以用它來解碼。維特比算法采用逐步漸進的方法,計算到每步的最短距離,到下步的最短距離只用接著本步的計算即可,相比窮舉法,大大縮短了計算的時間,并且基本可以實現實時的輸出,這看似簡單,但在當時確是很了不起的。維特比并不滿足停留在算法本身,他將算法推廣出去,并應用到了實際中,創立了高通公司,成為了世界上第二富有的數學家。高通公司在第二代移動通信中并不占很強的市場地位,而其利用CDMA技術霸占了3G的市場,可見遠見的洞察力是多么的重要。

  第二十七章《再談文本分類問題——期望最大化算法》:該章講的其實就是K均值聚類問題,設置原始聚類中心,然后不斷迭代,直至收斂,將每個點分到一個類中。其實隱馬爾科夫模型的訓練和最大熵的訓練都是期望最大化算法(EM)。首先,根據現有的模型,計算各個觀測數據輸入到模型中的計算結果,這個過程稱為期望值計算過程,或E過程;接下來,重新計算模型參數,以最大化期望值,這個過程稱為最大化的過程,或M過程。優化的目標函數如果是個凸函數,則一定有全局最優解,若不是凸函數,則可能找到的是局部最優解。在以后的一些問題求解過程中,應該考慮其是否是EM問題,也可以考慮參考這種思想,不斷迭代以優化目標的過程。

  第二十八章《邏輯回歸和搜索廣告》:雅虎和百度的競價排名廣告并不比谷歌的根據廣告的預估點擊率來客觀的推送廣告收入多。點擊預估率有很多影響因素,一種有效的方法是邏輯回歸模型,邏輯回歸模型是一種將影響概率的不同因素結合在一起的指數模型。其訓練方法和最大熵模型相似。同樣不是很理解其具體內涵。

  第二十九章《各個擊破和Google云計算的基礎》:分而治之,各個擊破是一個很好的方法,Google開發的MapReduce算法就應用了該方法。將一個大任務分成幾個小任務,這個過程叫Map,將小任務的結果合并成最終結果,這個過程叫Reduce,該過程如何調度、協調就是工程上比較復雜的事情了。可見大量用到的、真正有用的方法往往簡單而又樸實。

  附錄《計算復雜度》:計算機中復雜度是以O()來表示的,如果一個算法的計算量不超過N的多項式函數,則稱算法為多項式函數復雜度的(P問題),是可以計算的。若比N的多項式函數還高,則是非多項式問題,實際上是不可計算的。非多項式問題中一種非確定的多項式問題(簡稱NP),是科學家研究的焦點,因為現實中好多問題都是NP問題。另外還有NP-Complete問題(NP問題可以在多項式時間內規約到該問題)和NP-Hard問題,對于這兩種問題,需要簡化找到近似解。

  整體上,《數學之美》這本書讓我了解了很多文本處理,數據挖掘相關的知識,學到了很多。其中,簡單美以及一些科學家的大師風范讓我印象深刻!書中提到的一些思想(即道)讓我受益匪淺!

  《數學之美》讀書筆記 2

  最近看了這本《數學之美》,不得不感嘆一句,可惜早已身不在起點。

  我讀書的時候,數學成績一直都很好,雖然離開學校已經10多年,自覺當初的知識還是記得很多,6~7年前再考線性代數和概率論,還是得到了很高的分數。不過我也和大部分人一樣,覺得數學沒有太多用處,特別是高中和大學里面學的,那些三角函數,向量,大數定律,解析幾何,除了在考試的題目里面用一下,平時又有什么地方可以用呢?

  看了《數學之美》,驚嘆于數學的浩瀚和簡單,說它浩瀚,是因為它的分支涵蓋了科學的方方面面,是所有科學的理論基礎,說它簡單,無論多復雜的問題,最后總結的數學公式都簡單到只有區區幾個符號和字母。

  這本書介紹數學理論在互聯網上的運用,平時我們在使用互聯網搜索或者翻譯功能的時候,時常會感嘆電腦對自己的了解和它的聰明,其實背后的原理就是一個個精美的算法和大量數據的訓練。那些或者熟悉或者陌生的數學知識(聯合概率分布,維特比算法,期望最大化,貝葉斯網絡,隱形馬爾可夫鏈,余弦定律,etc),一步步構建了我們現在所賴以生存的網上世界。

  之所以覺得自己早已身不在起點,是因為上面這些數學知識,早已經不在我的知識框架之內,就算曾經學過,也不過是囫圇吞棗一樣的強記硬背,沒有領會過其中的真正意義。而今天想重頭在來學一次,其實已經不可能了。且不說要花費多少的精力和時間,還需要的是領悟力。而這一些,已經不是我可以簡單付出的。

  不像物理、化學需要復雜的.實驗來驗證,很多數學的證明,幾乎只要有一顆聰明的頭腦和無數的草稿紙,可是光是這顆聰明的頭腦,就可以阻攔掉很多人。有人說多讀書就會聰明,我不否認,書本的確會提供很多知識,可是不同的人讀同一本書也會有不同的收貨,這就限制于每個人的知識框架和認知水平。就如一個數學功底好過我的人,看這本書,就會更容易理解里面的公式和推導出這些公式的其他運用點,而我,只能站在數學的門口,感嘆一句,它真的好美吧。

  當然,我暫時無法在實際生活中運用這些數學公式,可是書中提到的一些方法論,還是很有幫助的

  1)一個產業的顛覆或者創新,大部分來自于外部的力量,比如用統計學原理做自然語言處理。

  2)基礎知識和基礎數據是很重要性,只有足夠多和足夠廣的數據,才可以提供有效的分析,和驗證分析方法的好壞。

  3)先幫用戶解決80%的問題,在慢慢解決剩下的20%的問題;

  4)不要等一個東西完美了,才發布;

  5)簡單是美,堅持選擇簡單的做法,這樣會容易解釋每一個步驟和方法背后的道理,也便于查錯。

  6)正確的模型也可能受噪音干擾,而顯得不準確;這時不應該用一種湊合的修正方法加以彌補,而是要找到噪音的根源,從根本上修正它。

  7)一個人想要在自己的領域做到世界一流,他的周圍必須有非常多的一流人物。

  《數學之美》讀書筆記 3

  《數學之美》,一個從事多年工作的谷歌研究員眼中的數學。令我大飽眼福的是,大學里面的數學知識竟能如此廣泛運用到了計算機行業中。

  在語音識別、翻譯,還有密碼學領域,有著許多基于概率統計的模型和思想。當然,貝葉斯公式是基礎,應用到隱含馬爾科夫鏈模型,神經網絡模型。

  在搜索中,一些相關性的計算,無不用到了概率的知識。在新聞分類中,用到了一些有關矩陣特征值、相似對角化的知識。當然,在圖像處理方面,矩陣變換可謂是無處不在。另外,在識別方面,有一些通信模型,涉及到了信道、誤碼率、信息熵。

  最近剛開學也沒什么事,所以就想隨便找幾本書看一下,但最好別是那種太艱深晦澀的書。8月份一直到現在,吳軍寫的這本12年5月出版的《數學之美》一直盤踞京東、亞馬遜等各大網上商城科技類圖書的榜首,當然,還有早些時候出版的《浪潮之巔》也排在很靠前的位置。心想市場的力量應該能幫我挑出好書吧,于是就從圖書館借了一本來,一直到今天晚上把它給看完了。

  因此想寫一點東西來總結、反思一下,反正剛開完班會也沒什么事干。

  寫在前面的建議:如果你不討厭數學的話,強烈推薦這本書,網上也可以下到電子版,不過閱讀感覺上還是很不一樣的。

  廢話就不多說了,《數學之美》其實是一本科普類的讀物,所面向的是接受過普通高等教育的人,完全不需要在特定領域有很深的造詣就可以看懂,大概懂一點線性代數、概率統計、組合數學、信息論、計算機算法、模式識別最好(雖然列舉了這么多,其實有些不懂也沒關系……),所以尤其適合信科的人看。內容大部分是和人工智能、計算機相關的,這并非我所學的專業,但作者比較擅長將看似復雜的原理用簡明的語言表達出來,所以可讀性還是很好的。

  吳軍是清華大學畢業的,之前任職于Google,后來到了騰訊,這些文章都是發表在Google黑板報上的,后來經過了重寫,所以網上下載的和書本內容有所差異。由于吳軍本人是研究自然語言處理和語音識別的,所以統計語言模型的東西可能會多一點,不過我覺得這絲毫不妨礙全書數學之美的展現……感覺收獲還是挺多的,知識上的有一些,但更多還是思維方式上的。作者舉了很多例子試圖讓人明白很多看似復雜的高科技背后,基本原理其實是出乎意料簡單的(當然,必須承認第一個想到這些方法的人還是非常了不起的……)。比如高準確率的機器翻譯,看上去好像是計算機能夠理解各國語言,隱藏在背后的卻是很多具有大學理科學歷的`人都非常清楚的統計模型和概率模型;再比如拼音輸入法的數學原理,早期的研究主要集中在縮短平均編碼長度,比如曾經流行一時的五筆輸入法,而現今真正實用的輸入法卻是有很多信息冗余、編碼長度比較長的拼音輸入法,作者從信息論和市場的角度做了簡單的闡述;又比如新聞的自動分類,許多非IT領域的人可能會認為計算機可以讀懂新聞并進行分類,而實際上只是特征向量的抽取、多維空間中向量夾角的計算,非常非常簡單,但凡學過一點線性代數的人絕對是一看就懂的……當然,完美的實現還需要考慮很多細節和現實的情況,但這并不是這本書所關注的地方,數學之美在于其簡潔而不是繁瑣。

  除了對于具體信息技術的剖析之外,作者還花了很大篇幅來講一些杰出人士的成長過程,特別是把這些人的成長經歷和中國學生的成長經歷作對比。雖然作者并沒有明說,但字里行間多少流露出對于中國高等教育以及很多中國企業的批評,一是教育的功利性,缺乏寬松的獨立思考的環境,即使學了一堆理論也難有用武之地,自然也就缺乏創新性的成果;二是中國企業的短視,大部分都不舍得在新框架開發上投資,而是坐享學術界和國外企業的研究成果。

  總結一下呢,《數學之美》事實上不能帶給你編程能力的提升,也沒法讓人的數學水平有顯著的提升,但它在很大程度上讓你跳出教科書式的繁瑣細節的束縛,能夠從更宏觀的角度來思考信息世界背后的數學引擎的運行原理,讓人明白看似很高級、復雜的東西背后其實并不如我們所想象的那樣復雜,而我們所學的“枯燥”的數學真的可以“四兩撥千斤”,改變億萬人的生活。

  《數學之美》讀書筆記 4

  人們發現真理的形式上從來都是簡單的,而不是復雜和含混的。

  ——牛頓

  自小就學數學的我,并不覺得它是美好的。于我而言,數學就像緊箍咒一樣,不能提,一提。就頭疼。

  而看了吳軍博士所寫的《數學之美》后,我對數學的感覺,從以前的被動獲取和勉強學習,變成了強烈熱愛和主動積極的學習。這原因就在于我發現了它的價值,它的一枝獨秀,不可或缺的地位,數學的博大精深和對其相關的各類事業的發展的價值已使我深深陶醉其中。這本書中有很多復雜且長的公式,但這并不妨礙大眾的閱讀,因為它并非在于讓你了解更多IT領域的知識,而是用了大量篇幅介紹各個領域的典故,讓我們感受數學思維。這就像李欣教授所說:“成為一個領域的大師有其偶然性,但更有其必然性。其必然性就是大師們的思維方法。”

  英國哲學家弗朗西斯·培根在《論美德》這篇文章中講:“美德就如同華貴的寶石,在樸素的襯托下最顯華麗。”數學的美妙,也恰恰在于一個好的思維,好的方法。

  在《數學之美》十四章,我被它的標題吸引到了。“余弦定理和新聞的分類”,這倆看似八竿子打不著。卻有著緊密的聯系。可以說,新聞的分類很大程度上依賴的是余弦定理。我們都知道,計算機處理一個問題是讓他去算,而不是像人類一樣理解了它,再去解決。而科學家們遇到這個問題,卻用了另一種思維,他們把文字的新聞變成一組可計算的數字,然后再設計一個算法來算出任意兩篇新聞的'相似性。稍詳細一些就是:對于一篇新聞中的所有實詞。計算出它們的TF-IDF值,再把這些值按照其在對應詞匯表的位置依次排列就得到一個向量,這即新聞的特征向量。這時,就可以通過計算兩個向量夾角來判斷對應的新聞主題的接近程度,這也就要用到余弦定理了。我在必修五數學書上學到余弦定理時,很難想象它可以用來對新聞進行分類。在這里我又一次看到了數學工具的用途。

  在書中,我也了解到了數學的發展實際上是不斷的抽象和概括的過程。這些抽象了的方法看似離生活越來越遠,但他們最終能找到應用的地方,布爾代數便是如此。

  布爾代數的簡單不能再簡單了。運算的元素只有兩個0和1,基本的運算只有“與”、“或”和“非”。幾乎就是我們現在所學的“判斷命題真假”。在布爾代數提出后的80多年里,他確實沒有什么像樣的應用。直到1938年香農在他的碩士論文中指出,布爾代數來實現開關電路。才使得布爾代數成為數字電路的基礎。正是依靠這一點,人類用一個個開關電路最終“搭出”電子計算機。

  這些,都能體現作者“簡單即是美”的思想。他在書中也寫道:“數學的精彩之處就在于簡單的模型可以干大事。”這些,也都是我從未感受到過的。并且,在這本書中,作者也用了不少篇幅來介紹通信領域的世界級專家,讓我對真正的世界級學者有更多的了解和理解,比如賈里尼克,Google AK-47的設計者——阿米特·辛格博士,自然語言處理的教父米奇·馬庫斯等等。

  愛因斯坦說過:“從希臘哲學到現代物理學的整個科學史中。不斷有人力圖地表面上極為復雜的自然現象歸結為幾個簡單的基本概念和關系,這就是整個自然哲學的基本原理。”這本書把數學在IT領域的美麗予以了精彩表達,我也知道,把一件復雜的事用簡單的語言表達出來,并非易事,這應該也是各界人士都對這本書予以好評的原因吧。

  當然,我也明白,欣賞美不是終極目的,更值得我們追求的是創造美境界。

  還有,希望未來的自己,無論生活好與壞,都能少一點浮躁,多一點踏實和對自然科學本質的好奇求知。

  《數學之美》讀書筆記 5

  我是在讀了吳軍博士的《浪潮之巔》之后,發現推薦了《數學之美》這本書。我到豆瓣讀書上看了看評價,就果斷在當當上下單買了一本研讀。本來我以為這是一本充滿各種數學專業術語的書,讀后讓我非常震撼的是吳軍博士居然能用非常通俗的語言將自然語言處理等高深理論解釋的相當簡單。在李開復博士之后,吳軍博士又成為了目前備受矚目的具有深厚技術背景的作家。對于我來說,讀這本書有掃盲的功效,讓我知道了很多以前不知道的東西。我的想法是在研究生階段,不只局限于導師的研究方向,通過更加廣泛的涉獵知識,去尋找一個自己喜歡的研究領域。如果找到了這樣一個領域,那么我就讀博士。如果沒有的話,那么我想還是工作算了。

  1、學科之間的聯系是如此的重要

  全書主要是圍繞著吳軍博士所研究的自然語言處理方向來講述一些應用在這個研究領域的數學知識,用了很大篇幅講解了將通信的原理應用到自然語言處理上所取得的巨大成功。以前學習計算機網絡的時候,學過一個香農定理。對香農的認識就從香農定理開始,因為考研會考相關的計算題。看了這本書才知道,香農的《信息論》對今天的影響真的是不可估量。通過這樣一個過程,我也對以前的本科學校的學科建設產生了一些憂慮。對于培養計算機人才來說,無論是培養應用型人才,還是培養研究型人才,都應該與電子、通信有一定的'交叉,這樣對學生思考問題的啟發與視野的開闊有著重要的作用。計算機本身就是從電子、通信、數學等學科中抽出來的新興的學科,在發展了多年之后,我們發現它仍然需要繼承一些傳統。回想自己的本科四年,上的更多的課時語言類、技術類的課程,這些課程的確對提升學生的就業有很大幫助。但是我想說的是,一個忽視數學基礎、學科交叉的學校,他無法成為一所國內的一流大學。作為一個母校培養的學生,我深知改革的阻力與困難,但是我希望母校的計算機學院能越辦越好。我們現在已經培養出很多高薪優秀的技術人才,我希望將來也能培養出更多的研究型人才。

  2、看起來很牛的東西卻用著難以置信的簡單數學原理

  在整本書中讓我最為印象深刻的是解釋Google搜索的原理,居然就是簡單的布爾代數運算。這個的確讓我大跌眼鏡,我一直認為搜索時一個非常復雜而龐大的問題,其數學原理也是相當高深的,但是吳軍博士的解釋讓我大開眼界。與此同時也知道了Google為什么牛,牛在哪了。搜索的原理雖然非常簡單,但是搜索是一個需要對海量數據進行操作的工作。Google在海量數據的處理方面的確是相當先進的,MapReduce、BigTable等等一些技術的發明與應用使得Google在搜索上無出其右。目前分布式存儲、分布式計算、數據倉庫與存儲等研究領域近些年來的大熱也說明Google在引領研究方向上的超凡本領。

  3、感謝概率老師的教誨

  在大二的時候,有一個在我們學生中聲望很高的概率老師,他在課程即將結束的時候跟我們說我們將的是前幾章,這些事概率論與數理統計的基礎。對于你們計算機的學生來時,后面的章節才是最有用的,以后一定要好好的研究,弄上一兩個在你的畢業設計上就會讓你畢業設計提升一個檔次,有可能驗收你畢業設計的老師也不懂。我當時對他的話沒有特別在意,我只關心期末考試要考哪些題目,因為我那個學期的概率課基本上都在睡覺,只有他講笑話的時候不睡。我看《數學之美》后發現馬爾科夫鏈、貝葉斯網絡之后,對以前的概率老師充滿無限的敬意。我發現我們再本科階段學習的《高等數學》、《線性代數》、《概率論與數理統計》在計算機學科應用較多的要數概率論與數理統計,還有一門我學的不好的《離散數學》在計算機中也是有著舉足輕重的地位。我在看米歇爾的《機器學習》時也發現很多熟悉的概率論與數理統計的知識,這讓我不得不開始考慮重新彌補自己的數學短板。我的想法是在研一這一年把概率論與數理統計、線性代數、離散數學盡我最大的努力補一補,希望他們對我今后的學習有所幫助。

  4、說說作者吳軍博士

  吳軍博士寫的書對于學習計算機的學生來說,讀起來有種說不出的親切感。可能這跟他是技術出身的原因有關,流暢的文筆、質樸的文風也讓人讀起來很舒服。看高曉松在優酷上的《曉說》就知道,在硅谷有著眾多的華裔工程師,他們很多都來自清華、北大等國內的名牌大學,這些人在美國實現著自己的夢想。吳軍博士也曾是這其中的一員,我非常希望那些像吳軍博士一樣的牛人們能夠寫書或者來國內的大學做一些演講、論壇等等,開闊一下我們的視野,傳授一下做學問的經驗。與此同時,我也在想為什么我們國家那么多優秀的IT人才都去了美國。這個問題在我去蘋果公司在東軟信息學院組織的培訓過程中得到了答案,那個南京郵電的老師講了講中國為什么不像美國那么有創造力。我們中國人并不缺乏創造力,很多時候是我們所處的外部環境恰恰阻礙了創新。我想那么多優秀的清華北大學子紛紛到大洋彼岸的美國,正是被美國開放的學術環境、創新氛圍所吸引,每個人都有自己的夢想,他們去美國也是為了能實現自己的夢想。以前都覺得他們是不愛國,現在長大了,對于這個問題看得更清楚了一點。我想說我們的祖國在經歷了改革開放30多年的飛速發展之后,目前正處于一個關鍵和脆弱的時期。我們靠著人口紅利取得了巨大的成就,我們能不能憑借人才紅利取得更大的成就還是未知。希望有更多的人才能像李開復博士、吳軍博士那樣,為我們這個民族青年的成長和國家發展做出貢獻。

  《數學之美》讀書筆記 6

  吳軍2012年的作品,源于其在谷歌黑板報的系列文章,講述數學方法在信息技術中的應用,說明了為什么科學研究中方法論如此的重要,以及數學如何簡單優雅地解決問題,直達本質。對比他的其他作品比如《浪潮之巔》、《硅谷之謎》,本書比較偏技術,屬于目前大熱的數據科學(Data Science)范疇,在云計算、大數據和人工智能等成為常態和趨勢的今天,適合所有對IT技術及相關管理人員閱讀。對我而言,最大的收獲包括:

  規則vs.算法:自然語言處理,在早期幾十年基于文法規則都無法達到可應用的效果,終于在轉變為基于統計方法且積累了足夠數據后,形成了突破,達到了今日可大規模商用的'效果。再次說明了數據及算法在今日的重要性。

  一些常見應用涉及的優化算法:搜索相關(分詞、網絡爬蟲、索引、結果排名、廣告及反作弊)、文本處理(新聞分類、廣告相關性、輸入法)、地圖路線規劃、信息指紋、密碼學等。這些算法不止適用于這些應用場景,還可以在其他許多地方借鑒,比如用戶評論分析也需要用分詞和語義分析,許多價值優化算法都需要用到期望值最大化和邏輯回歸等。

  優雅的理論模型:在初始階段,出于時間和成本考慮,在技術實現上可能會使用一些拼湊的方法,甚至山寨,但是這種方法并不可持續,很難進行系統化的優化,開發維護成本都很高,最終會遇到災難性問題。做事情需要有境界,最求簡單而優雅的理論和工程實現,這在長期是非常有好處的。

  吳軍使用淺顯易懂的語言,把解決問題的思路和復雜的數學模型講得很清楚,雖然理解延伸閱讀里的具體數學公式還是有些挑戰。其實重要的是思想和方法,具體的實現可以在用到時再進一步的了解。如何用簡單的語言把復雜的技術講清楚,也是我工作的需要,要不斷學習磨練。書里提到了啟發吳軍這方面能力的兩本書,即《從0到無窮大》和《時間簡史》,會有要去看下。

  《數學之美》讀書筆記 7

  上個月去北京開會,順道拜訪了人民郵電出版社,合作多年的編輯陳冀康贈我一本《數學之美》,說一定是我喜歡看的類型。以前也在網上零散看過Google黑板報上吳軍先生的文章,對他的前一本書《浪潮之顛》也有耳聞,但沒有讀過。這次有機會集中閱讀他的文章,確實是一段美妙的體驗。

  讀完這本書有一點強烈的感受:工具一定要先進。數學是強大的工具,計算機也是。這兩種工具結合在一起,造就了強大的google、百度、亞馬遜、阿里、京東、騰迅等公司。他們不是百年老店,但他們掌握了先進的工具。

  掌握了先進的工具,必將獲得競爭優勢。如果你知道哪里有一群軟件工程師,維護著更大的一群計算機,那么不要猶豫,想辦法使用他們提供的服務,因為這會給你帶來優勢。所以我們使用Google的搜索和郵件,在亞馬遜、京東和淘寶上購物,用QQ和微博聯系朋友,使用銀行卡和網上銀行,利用交易終端在全球市場上進行各種交易……

  人類歷史就是一部工具的進化史。石器、青銅、鐵器、火藥、蒸汽機、內燃機、電報、電話、電視、計算機、衛星、互聯網,工具的進步引領著文明的進步。新的工具不斷淘汰老的工具,就像互聯網視頻點播正在淘汰電視、微博正在淘汰報紙、電子書正在淘汰紙質書那樣。

  但有一些古老的工具,今天仍有人在學習和使用,甚至在上面花費許多時間。毛筆就是這樣一個例子。今天學習掌握毛筆這種“落后的”工具,還有什么意義?其實我們在使用一些“落后的”工具時,主要是在學習工具背后的思想。書法和繪畫中蘊含的藝術審美的一般原則,經得起具體工具變遷的考驗。甲骨文、金文、石鼓文所包含的對空間構圖的理解,仍然值得現代人學習。思想工具是比實物工具更強大的工具。

  工具組合使用,形成更強大的新工具。《數學之美》中提到的馬爾可夫鏈雖然是很強大的工具,但我在數學課上沒有聽老師提到過。這本書中給我印象最深的例子是余弦定理和新聞分類。余弦定理是中學數學,再加上一些不算很難的多維向量的知識,竟然解決了計算機新聞分類這樣的難題!

  每一種工具的背后,是人們對世界的一種理解。蒸汽機和內燃機背后,是力學的世界。電報、電話、電視、計算機和互聯網背后,是信息的世界。數學是抽象的工具,是其他工具背后的工具。每一門學科要成為科學,都少不了數學。也許有一天人們會習慣,用數學工具來分析藝術。數學是一種語言,它源于具體的世界,又高于具體的世界。如果說語言是對世界的認識和描述,如果說數學是一種語言,那么它一定是最接近神的語言。看似毫不相關,卻又能描述萬事萬物。

  學習數學有什么用?物理學家費曼當年在大一時提出這個問題,他的師兄建議他轉到物理系。今天,這個問題已不成為問題。具有扎實數學功底的人才正進入各行各業,例如金融業。我認識一個出版社的老總,他招應屆畢業生有一個條件:數學要好。

  工具雖好,關鍵還要會用。最終要回到掌握先進工具的人。軟件算法工程師加上計算機集群,這是目前一流企業必需的裝備。正如馬克.安德森所說的,各行各業的一流公司,都是軟件公司。優秀的`軟件算法工程師,是人才爭奪的焦點。這樣,我們就容易理解Google招工程師的要求。

  對信息加工處理和傳遞的能力不斷增強,是知識經濟的特點。《數學之美》展示了Google如何運用數學和計算機網絡,帶領我們進入云計算和大數據時代。

  知識經濟時代的工作,就是在各自的領域中進行科學研究。科學研究要大膽假設,小心求證。科學研究要量化。科學研究要有對比實驗。科學研究要有數學模型。科學研究要有田野調查。科學研究要有文獻查證。科學研究要有同行評議。《數學之美》向我們介紹了自然語言分析領域的科研方法和過程。

  任何一個領域,深入進去都有無數的細節。有興趣的人不但沒被這些細節嚇倒,反而會興致勃勃地研究,從而達到令人仰慕的高度。吳軍先生向我們展示了數學和算法中的這些細節,也展示了他所達到的高度。值得我學習。

  感謝吳軍先生分享他的知識和深刻見解,也感謝人民郵電出版社出了這樣一本好書。

  《數學之美》讀書筆記 8

  重復的體力勞動已經被機器取代,重復的腦力勞動也將被AI取代。

  目前的`算法更多的是從統計學、概率論角度來執行,其算法依靠人為設定執行,今后AI的介入,算法會趨于自我迭代、自我演化。

  就整體而言機器的搜索、篩選、分析、邏輯推理等,都是基于當前情況最大概率決策。即通過算法計算下一步所有可能情況的概率分布,然后得出實現目標哪種決策成功概率最高,即為下一步的方案。

  在這種環境下人最好的方式便是與機器合作,將資源分配到這些大概率事件上,當然也會有一部分人懷有賭徒心態,將資源,甚至全部資源分配到小概率事件上,幻想出現奇跡,而這件事就叫“創新”。

  但“創新”才是真正的未來,因為從宇宙角度來看,人類誕生的幾率不到萬億分之一,而這是多么偉大的奇跡,又是多么偉大的創新!

  《數學之美》讀書筆記 9

  本書介紹了Google產品中涉及的自然語言處理、統計語言模型、中文分詞、信息度量、拼音輸入法、搜索引擎、網頁排名、密碼學等內容背后的數學原理。讓我們看到了布爾代數、離散數學、統計學、矩陣計算、馬爾科夫鏈等似曾相識的內容在實際生活中的應用。相比于其他數學題材書籍,吳軍老師把抽象、深奧的數學方法解釋得通俗易懂,書中同時引用了諸多的歷史典故和人物介紹,給人以很多啟發,也讓人由衷感嘆數學的簡潔和強大。

  雖是數據專業畢業,但是才疏學淺,無力對數學的美進行闡述。僅就書中兩個比較喜歡的地方發表一點不成熟的`見解,與諸位共勉。

  其一,在講Google的搜素引擎反作弊時談到做事情的兩種境界“道”和“術”,術就是具體的做事方法,而道則是隱藏在問題背后的動機和本質。在術這個層面解決問題要付出更多的努力,有點類似于我們常說的“頭疼醫頭,腳疼醫腳”,暫時不疼了,過幾天復發了,再去醫治,如此往復,無法從根本上解決;而只有找到了致病原因,才能做到藥到病除,根本治愈。本人之前參與過行內月終自動核對的研發,月終核對初期數據的不一致性只能靠數百業務人員人工核對數據差異,然后修改數據,每月1日都要加班加點,工作量很大,這是從術上解決問題。后來找到了產生差異的原因是會計核算時的利息調整造成的,把這些數據接過來進行相應沖減后差異就消失了,業務人員也不用來加班了,這才是從道上解決問題。

  其二,是在做中文網頁排名時提到的從業界成功的秘訣之一:“先幫助用戶解決80%的問題,再慢慢解決剩下的20%的問題。許多時候做事失敗,不是因為人不夠優秀,而是做事的方法不對。一開始追求大而全的解決方案,之后長時間不能完成,最后不了了之”。我們在做項目時也是一樣,業務有時要的功能非常急,可能有些功能也實現不了(比如系統響應時間長、查詢明細不能支持省行等)。這時我們就要將焦點關注在那些可以實現的80%的功能上,哪怕剛剛上線的系統界面丑點,操作復雜點,反應速度慢點,但是至少業務有可用的系統,剩下時間再去優化那剩下的20%。這樣可以幫助我行搶占先機,在與同行業的競爭中取得主動。如果等待我們把所有的細節都搞清楚再動手開發,力求完美,那么很可能系統能夠上線的時候業務已經不需要了。

  數學之美,也就是簡單之美。希望大家能夠喜歡數學,喜歡數學之美。

  《數學之美》讀書筆記 10

  這本書一共3章,主要介紹了這些數學方法:統計方法、統計語言模型、中文信息處理、隱含馬爾科夫模型、布爾代數、圖論、網頁排名技術、信息論、動態規劃、余弦定理、矩陣運算、信息指紋、密碼學、搜索技術、數學模型、最大熵模型、拼音輸入法、貝葉斯網絡、句法分析、維特比算法、各個擊破算法等。從第一章開始其明了幽默的語言就深深的吸引了我,讓我覺得如果早一點看這本書,也許數學之于我就是另一番天地。

  第一章里作者從原始人類的通信方式開始入手,人類最早利用聲音進行的通信依賴于開篇給出的"編碼-傳輸-解碼"的基本原理,指出原始人的通信方式和今天的通信方式沒什么不同,這世界上近現代最普遍的原理大部分都在人類發展的歷史上被無意識的`使用著。

  第六章信息論給出了信息的度量,它是基于概率的,概率越小,其不確定性越大,信息量就越大。引入信息量就可以消除系統的不確定性,同理自然語言處理的大量問題就是找相關的信息。信息熵的物理含義是對一個信息系統不確定性的度量,這一點與熱力學中的熵概念相同,看似不同的學科之間也會有著很強的相似性。事務之間是存在聯系的,要學會借鑒其他知識。

  這本書里也能找到不少在學的課程知識,如大學專業課里,數電總是要比模電簡單不少,而自然界里大部分的信號都屬于模擬信號。所謂模擬信號,是指從時間和數值兩種維度上看來都是連續變化的信號。在實際電路中,模數轉換是一個很重要的過程,將預處理的模擬信號經過模數變換為數字信號,然后進行數字信號處理。而數字化處理有很多優點,比如功能強大、抗干擾能力強、易于傳輸等。

  簡而言之,如果沒有數學,就沒有數字信號處理和傳輸的概念,而數字信號傳輸在當下大規模的集成電路里是必不可少的,這是通信成功的基本要求。

  作者把生活中遇到的復雜的問題,以簡單清晰,直觀的模型或者公式展現出來。我們可能過于注意生活中的種種奇妙現象,往往忽略了追求其理論邏輯的演繹,而這,也是大部分問題的主要根源。

  羅素曾經說過:"數學,如果正確地看,不但擁有真理,而且也具有至高的美";愛因斯坦也曾說過:"純數學使我們能夠發現概念和聯系這些概念的規律,這些概念和規律給了我們理解自然現象的鑰匙。"數學在所有科學領域起著基礎和根本的作用。"哪里有數,哪里就有美"。在這里,我也想把《數學之美》真誠推薦給每一位對自然、科學、生活有興趣有熱情的朋友,不管你是從事職業,讀一讀它,會讓你受益良多。

  吳軍老師在《數學之美》中提到:"這本書的目的是講道而不是講術。很多具體的搜索技術很快會從獨門絕技到普及,再到落伍,追求術的人一輩子工作很辛苦。只有掌握了搜索的本質和精髓才能永遠游刃有余".回到我們日常的生活中,需要學習的東西、技術太多太多,如果一味地只為去追技術的腳步,那么我們也會很累很累。然而基本的原理卻是沒有怎么變化的。只見森林,不見樹木,難免迷失;站在高處向下看,也許我們一直看不到底,但是站在底處卻是可以看見底的。

  《數學之美》讀書筆記 11

  我在想,為什么我們要學習數學?也許這個問題成年人有一萬個答案,可是當我們第一次走進教室,學習數學的時候,大概率還是個孩子,你怎么跟一個孩子解釋為什么要學習數學呢?我把這個問題拋給了一個朋友,他說:“為了提高思維邏輯能力,這是我初中老師在第一節數學課上告訴我們的”。或者一位5歲的小朋友又會問:“什么是邏輯能力呢?”

  也許從出生第一天,我們就一直在被動的接收一些東西,父母的勸導,老師的傳授,可5歲的孩子還是會把玩具散落一地,6歲的孩子仍然會因為父母不給買玩具而嗷嗷大哭,無論你怎么勸導一個人,怎么勸誡一個人,他可能仍然會犯你認為會出現的錯誤。我記得有位教育專家這么說:“你告訴寶寶他把玩具弄壞了,就等于丟了10個棒棒糖”,從此以后這個寶寶可能會更加珍惜玩具。這個方法很簡單,但是貌似最有效。數學是什么?數學不就是把復雜的東西簡單化么?

  現在我們再回答前面的問題:為什么我要學習數學?我們可以這么跟5歲的小朋友說:“媽媽給你10元錢,讓你買醬油,醬油7元、棒棒糖1元一個,剩下的'錢你可以買幾個棒棒糖?”或許想吃棒棒糖的就會苦思冥想一番,或許未來媽媽真的給他10元錢去買醬油,結果回來就變成了一瓶醬油和3個棒棒糖。或者再過一段時間,這位小朋友會選擇6元的醬油,因為可以獲得4個棒棒糖了。他這么計算著:7+3和6+4都可以等于10,那么如果要必須買醬油的情況下,1+9也可以等于10。我們都知道也有1元的袋裝醬油,于是9個棒棒糖到手了。任何知識的魅力都在于自我的發現,只有你對它產生了無限的興趣,你就會不斷的發現它的美,《數學之美》也可以變成《物理之美》。

  有些人會說,上面的例子是利益驅動型,不是興趣驅動型,對于一個孩子來說,你能指望他向成人那樣:“我需要的不是物質世界,我需要的是精神世界?”。5歲寶寶最喜歡做得事情就是在吃和玩上面,請問,成年人不也是如此么?這就是天性。只不過成年人的自控能力足夠大罷了。

  我們回到書本上,這本書是否合適自己?如果沒有專業的數學知識,很難讀懂。但是它又有著無限的魅力,讓你不自覺的讀下去,為什么?因為“數學之美”,雖然大多數人看不懂里面的公式,但是能夠明白數學能解決的問題:概率統計學能夠解決自然語言處理、布爾代數能解決搜索引擎的問題、有限狀態機和動態規劃能解決地圖問題、向量+特征向量+余弦定理能解決自動新聞分類問題、最大熵模型解決金融問題,看著看著我就莫名的產生了一種想要學習算法的沖動,這不就是本書的意義所在么?

  最后,我推薦幾個章節希望有興趣的讀者可以關注下:

  1. 信息指紋,可以讓復雜的數據用簡單的一串數字存儲

  2. 13章,提到的簡單之美。當然之后多次提到

  3. 余弦定理(通過向量+特征向量+余弦定理)可以判斷兩條數據的相似性

  4. 17章,簡單密碼學(對密碼感興趣的可以看看)

  5. 布隆過濾器,用很少的空間存儲大量的數據,從而解決黑名單的問題(黑名單數據量龐大的時候,會增加判斷某一個名單是否出現過的難度)。

  6. 29章,分治算法,雖然沒有很明白算法,但是原理其實很簡單:把復雜的東西拆分成若干小的部分,然后進行逐個解決或者說各個擊破

  7. 30章,神經網絡,其實沒那么神秘,神經就好比一個網絡(馬爾科夫模型+貝葉斯網絡)中的各個節點而已。

  8. 31章,大數據,這章是最推薦看的,而且沒有很多專業的知識,一看就懂。不是什么都可以稱之為大數據的,大數據需要滿足幾個條件:數據的代表性、數據的多維度、數據的完備性。現在有很多公司都自稱自己有大數據,請不要侮辱大數據這個詞。順便說一下像百度這樣的公司,近幾年都在大數據上深耕,據我了解,比如醫療上面的項目,寧可免費做,只要求能夠得到醫療方面的大數據,可見其對大數據的重視程度。

【《數學之美》讀書筆記】相關文章:

關于數學之美教學設計(通用12篇)03-17

《橋之美》教學設計04-24

《橋之美》教學設計新版01-22

朱光潛《談美》的讀書筆記02-21

《積極心態之美》直播心得感受10-08

四季之美教學設計10-03

朱光潛《談美書簡》讀書筆記01-30

數學讀書筆記07-22

《傅雷家書》讀書筆記之四09-14

《談美書簡》讀書筆記1200字(精選10篇)07-25

主站蜘蛛池模板: 达日县| 资兴市| 洱源县| 绿春县| 武宁县| 陵川县| 大埔县| 雷山县| 屏东市| 和顺县| 开阳县| 喀喇| 安泽县| 双城市| 丹棱县| 萨嘎县| 阿拉尔市| 鄂温| 乃东县| 巴马| 夏河县| 西安市| 隆回县| 新郑市| 福州市| 翁牛特旗| 遂昌县| 凉城县| 阿勒泰市| 班玛县| 建宁县| 新晃| 铅山县| 辽宁省| 凭祥市| 荣成市| 舟山市| 托里县| 连江县| 中江县| 休宁县|