中考數學知識點總結(常用15篇)
總結是把一定階段內的有關情況分析研究,做出有指導性結論的書面材料,它可以幫助我們有尋找學習和工作中的規律,讓我們一起認真地寫一份總結吧。那么你知道總結如何寫嗎?以下是小編為大家整理的中考數學知識點總結,希望對大家有所幫助。
中考數學知識點總結1
中考數學知識點:分式混合運算法則
分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡.
分式混合運算法則:
分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);
乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;
加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;
變號必須兩處,結果要求最簡.
中考數學二次根式的加減法知識點總結
二次根式的加減法
知識點1:同類二次根式
(Ⅰ)幾個二次根式化成最簡二次根式以后,如果被開方數相同,這幾個二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。
(Ⅱ)判斷同類二次根式的方法:(1)首先將不是最簡形式的二次根式化為最簡二次根式以后,再看被開方數是否相同。(2)幾個二次根式是否是同類二次根式,只與被開方數及根指數有關,而與根號外的因式無關。
知識點2:合并同類二次根式的方法
合并同類二次根式的理論依據是逆用乘法對加法的分配律,合并同類二次根式,只把它們的系數相加,根指數和被開方數都不變,不是同類二次根式的不能合并。
知識點3:二次根式的加減法則
二次根式相加減先把各個二次根式化成最簡二次根式,再把同類二次根式合并,合并的方法為系數相加,根式不變。
知識點4:二次根式的混合運算方法和順序
運算方法是利用加、減、乘、除法則以及與多項式乘法類似法則進行混合運算。運算的順序是先乘方,后乘除,最后加減,有括號的先算括號內的。
知識點5:二次根式的加減法則與乘除法則的區別
乘除法中,系數相乘,被開方數相乘,與兩根式是否是同類根式無關,加減法中,系數相加,被開方數不變而且兩根式須是同類最簡根式。
中考數學知識點:直角三角形
★重點★解直角三角形
☆內容提要☆
一、三角函數
1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.
2.特殊角的三角函數值:
0°30°45°60°90°
sinα
cosα
tgα/
ctgα/
3.互余兩角的三角函數關系:sin(90°-α)=cosα;…
4.三角函數值隨角度變化的關系
5.查三角函數表
二、解直角三角形
1.定義:已知邊和角(兩個,其中必有一邊)→所有未知的'邊和角。
2.依據:①邊的關系:
②角的關系:A+B=90°
③邊角關系:三角函數的定義。
注意:盡量避免使用中間數據和除法。
三、對實際問題的處理
1.俯、仰角:2.方位角、象限角:3.坡度:
4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。
中考數學知識點總結2
不等式與不等式組
1.定義:
用符號〉,=,〈號連接的式子叫不等式。
2.性質:
①不等式的兩邊都加上或減去同一個整式,不等號方向不變。
②不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
③不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
3.分類:
①一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
②一元一次不等式組:
a.關于同一個未知數的'幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
4.考點:
①解一元一次不等式(組)
②根據具體問題中的數量關系列不等式(組)并解決簡單實際問題
③用數軸表示一元一次不等式(組)的解集
中考數學知識點總結3
一、 重要概念
1。數的分類及概念
數系表:
說明:“分類”的原則:1)相稱(不重、不漏)
2)有標準
2。非負數:正實數與零的統稱。(表為:x≥0)
常見的非負數有:
性質:若干個非負數的和為0,則每個非負擔數均為0。
3。倒數: ①定義及表示法
②性質:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1時,1/a1;D。積為1。
4。相反數: ①定義及表示法
②性質:A.a≠0時,a≠-a;B.a與-a在數軸上的位置;C。和為0,商為-1。
5。數軸:①定義(“三要素”)
②作用:A。直觀地比較實數的大小;B。明確體現絕對值意義;C。建立點與實數的一一對應關系。
6。奇數、偶數、質數、合數(正整數—自然數)
定義及表示:
奇數:2n-1
偶數:2n(n為自然數)
7。絕對值:①定義(兩種):
代數定義:
幾何定義:數a的.絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。
②│a│≥0,符號“││”是“非負數”的標志;③數a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現,其關鍵一步是去掉“││”符號。
中考數學知識點總結4
一、目標與要求
1.了解一元二次方程及有關概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,應用一元二次方程概念解決一些簡單題目。
2.掌握通過配方法、公式法、因式分解法降次──解一元二次方程,掌握依據實際問題建立一元二次方程的數學模型的方法,應用熟練掌握以上知識解決問題。
二、重點
1.一元二次方程及其它有關的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題。
2.判定一個數是否是方程的根;
3.用配方法、公式法、因式分解法降次──解一元二次方程。
4.運用開平方法解形如(x+m)2=n(n≥0)的方程,領會降次──轉化的數學思想。
5.利用實際問題建立一元二次方程的數學模型,并解決這個問題.
三、難點
1.一元二次方程配方法解題。
2.通過提出問題,建立一元二次方程的數學模型,再由一元一次方程的概念遷移到一元二次方程的概念。
3.用公式法解一元二次方程時的討論。
4.通過根據平方根的意義解形如x2=n,知識遷移到根據平方根的意義解形如(x+m)2=n(n≥0)的方程。
5.建立一元二次方程實際問題的數學模型,方程解與實際問題解的區別。
6.由實際問題列出的一元二次方程解出根后還要考慮這些根是否確定是實際問題的`根。
7.知識框架
四、知識點、概念總結
1.一元二次方程:方程兩邊都是整式,只含有一個未知數(一元),并且未知數的最高次數是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四個特點:
(1)含有一個未知數;
(2)且未知數次數最高次數是2;
(3)是整式方程。要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理。如果能整理為 ax2+bx+c=0(a≠0)的形式,則這個方程就為一元二次方程。
(4)將方程化為一般形式:ax2+bx+c=0時,應滿足(a≠0)
3. 一元二次方程的一般形式:一般地,任何一個關于x的一元二次方程,經過整理,都能化成如下形式ax2+bx+c=0(a≠0)。
一個一元二次方程經過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數;bx是一次項,b是一次項系數;c是常數項。
中考數學知識點總結5
考點1
相似三角形的概念、相似比的意義、畫圖形的放大和縮小。
考核要求:
(1)理解相似形的概念;
(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點2
平行線分線段成比例定理、三角形一邊的平行線的有關定理
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。
考點3
相似三角形的概念
考核要求:以相似三角形的概念為基礎,抓住相似三角形的特征,理解相似三角形的定義。
考點4
相似三角形的判定和性質及其應用
考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,并能較好地應用。
考點5
三角形的重心
考核要求:知道重心的定義并初步應用。
考點6
向量的有關概念
考點7
向量的加法、減法、實數與向量相乘、向量的線性運算
考核要求:掌握實數與向量相乘、向量的線性運算
考點8
銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考點9
解直角三角形及其應用
考核要求:
(1)理解解直角三角形的意義;
(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。
考點10
函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數
考核要求:
(1)通過實例認識變量、自變量、因變量,知道函數以及函數的定義域、函數值等概念;
(2)知道常值函數;
(3)知道函數的表示方法,知道符號的意義。
考點11
用待定系數法求二次函數的解析式
考核要求:
(1)掌握求函數解析式的方法;
(2)在求函數解析式中熟練運用待定系數法。
注意求函數解析式的步驟:一設、二代、三列、四還原。
考點12
畫二次函數的圖像
考核要求:
(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像
(2)理解二次函數的圖像,體會數形結合思想;
(3)會畫二次函數的大致圖像。
考點13
二次函數的圖像及其基本性質
考核要求:
(1)借助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;
(2)會用配方法求二次函數的頂點坐標,并說出二次函數的有關性質。
注意:
(1)解題時要數形結合;
(2)二次函數的平移要化成頂點式。
考點14
圓心角、弦、弦心距的概念
考核要求:清楚地認識圓心角、弦、弦心距的概念,并會用這些概念作出正確的判斷。
考點15
圓心角、弧、弦、弦心距之間的關系
考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。
考點16
垂徑定理及其推論
垂徑定理及其推論是圓這一板塊中最重要的知識點之一。
考點17
直線與圓、圓與圓的位置關系及其相應的數量關系
直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。
考點18
正多邊形的有關概念和基本性質
考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),并能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。
考點19
畫正三、四、六邊形。
考核要求:能用基本作圖工具,正確作出正三、四、六邊形。
考點20
確定事件和隨機事件
考核要求:
(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;
(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。
考點21
事件發生的可能性大小,事件的概率
考核要求:
(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小并排出大小順序;
(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;
(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。
注意:
(1)在給可能性的大小排序前可先用“一定發生”、“很有可能發生”、“可能發生”、“不太可能發生”、“一定不會發生”等詞語來表述事件發生的可能性的大小;
(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。
考點22
等可能試驗中事件的概率問題及概率計算
考核要求:
(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;
(2)會用枚舉法或畫“樹形圖”方法求等可能事件的'概率,會用區域面積之比解決簡單的概率問題;
(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。
注意:
(1)計算前要先確定是否為可能事件;
(2)用枚舉法或畫“樹形圖”方法求等可能事件的概率過程中要將所有等可能情況考慮完整。
考點23
數據整理與統計圖表
考核要求:
(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;
(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,并能通過圖表獲取有關信息。
考點24
統計的含義
考核要求:
(1)知道統計的意義和一般研究過程;
(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。
考點25
平均數、加權平均數的概念和計算
考核要求:
(1)理解平均數、加權平均數的概念;
(2)掌握平均數、加權平均數的計算公式。注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率。
考點26
中位數、眾數、方差、標準差的概念和計算
考核要求:
(1)知道中位數、眾數、方差、標準差的概念;
(2)會求一組數據的中位數、眾數、方差、標準差,并能用于解決簡單的統計問題。
注意:
(1)當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;
(2)求中位數之前必須先將數據排序。
考點27
頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖
考核要求:
(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;
(2)會畫頻數分布直方圖和頻率分布直方圖,并能用于解決有關的實際問題。解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1。
考點28
中位數、眾數、方差、標準差、頻數、頻率的應用
考核要求:
(1)了解基本統計量(平均數、眾數、中位數、方差、標準差、頻數、頻率)的意計算及其應用,并掌握其概念和計算方法;
(2)正確理解樣本數據的特征和數據的代表,能根據計算結果作出判斷和預測;
(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然后作出合理的解決。
如何整理數學學科課堂筆記?
一、內容提綱。
老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡、重點難點等,簡明清晰地呈現在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內容提綱,便于課后復習回顧,整體把握知識框架,對所學知識做到胸有成竹、清晰完整。
二、疑難問題。
將課堂上未聽懂的問題及時記下來,便于課后請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。相應的,一些問題對部分學生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續加以思考和探究,加以理解和掌握,不致出現知識的斷層、方法的缺陷。
三、思路方法。
對老師在課堂上介紹的解題方法和分析思路也應及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發智力,培養能力,并對提高解題水平大有益處。在這基礎上,若能主動鉆研,另辟蹊徑,則更難能可貴。
四、歸納總結。注意記下老師的課后總結,這對于濃縮一堂課的內容,找出重點及各部分之間的聯系,掌握基本概念、公式、定理,尋找規律,融會貫通課堂內容都很有作用。同時,很多有經驗的老師在課后小結時,一方面是承上歸納所學內容,另一方面又是啟下布置預習任務或點明后面所要學的內容,做好筆記可以把握學習的主動權,提前作準備,做到目標任務明確。
五、錯誤反思。
學習過程中不可避免地會犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。
數學常用解題技巧有哪些?
第一,應堅持由易到難的做題順序。
近年來高考數學試題的設置是8道選擇題、6道填空題、6到大題,通常稱為866結構。在實體設置的結構中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結構。基礎差的就是644,先把自己能做的、會做的拿到手。這是第一點。
第二,審題是關鍵。
把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。
第三,屬于非智力因素導致想不起來。
本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩定下來以后再回過頭來看會頓悟,豁然開朗。
第四,做選擇題的時候應運用最好的解題方法。
因為選擇題和填空題都是看結果不看過程,因此在這個過程中都應不擇手段,只要是能把正確的結論找到就行。考生常用的方法是直接法,從已知的開始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質法(音),一些出現字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結果來。再就是數形結合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質法、數形結合法三種方法都適合。做大題的時候要特別注意解題步驟,規范答題可以減少失分。簡單地說,規范答題就是從上一步的原因到下一步的結論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規范答題。
學霸分享的數學復習技巧
1、把答案蓋住看例題
例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。
所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。
經過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。
2、研究每題都考什么
數學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰術,而是要通過一題聯想到很多題。
3、錯一次反思一次
每次業及考試或多或少會發生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現。因此平時注意把錯題記下來。
學生若能將每次考試或練習中出現的錯誤記錄下來分析,并盡力保證在下次考試時不發生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。
4、分析試卷總結經驗
每次考試結束試卷發下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現的錯誤進行分類。
中考數學知識點總結6
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類:①整數②分數
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的'特性;
(4)自然數0和正整數;a>0a是正數;a<0a是負數;
a≥0a是正數或0a是非負數;a≤0?a是負數或0a是非正數.
有理數比大小:
(1)正數的絕對值越大,這個數越大;
(2)正數永遠比0大,負數永遠比0小;
(3)正數大于一切負數;
(4)兩個負數比大小,絕對值大的反而小;
(5)數軸上的兩個數,右邊的數總比左邊的數大;
(6)大數-小數>0,小數-大數<0.
中考數學知識點總結7
1、隨機事件
必然事件:在一定條件下,一定會發生的事件稱為必然事件。
不可能事件:在一定條件下,一定不會發生的事件稱為不可能事件。
必然事件和不可能事件統稱確定性事件。
隨機事件:在一定條件下,可能發生也可能不發生的事件稱為隨機事件。
2、概率
(1)概率的性質:P(必然事件)=1;P(不可能事件)=0;0
(2)一般地,如果在一次試驗中,有n種可能的結果,并且它們發生的可能性都相等,事件A包括其中的m種結果,那么事件A發生的概率。
1、能通過列表、畫樹狀圖等方法列出簡單隨機事件所有可能的結果,以及指定事件發生的所有可能結果,了解事件的概率。
2、知道通過大量的重復試驗,可以用頻率來估計概率。
1、必然事件、不可能事件、隨機事件的辨析。
2、簡單事件的概率求解。
3、用頻率估計概率。
4、用概率解決實際問題。
5、概率與其它知識的綜合運用。
1、下列事件中是必然事件的是( )
A、拉薩明日刮西北風 B、拋擲一枚硬幣,落地后正面朝上
C、當x是實數時,x2≥0 D、三角形內角和是360°
2、下列說法正確的是( )
A、拉薩市“明天降雨的概率是75%”表示明天有75%的時間會降雨
B、隨機拋擲一枚均勻的硬幣,落地后正面一定朝上
C、在一次抽獎活動中,“中獎的概率是1%”表示抽獎100次就一定會中獎
D、在平面內,平行四邊形的兩條對角線一定相交
3、下列事件是不可能事件的是( )
A、一個角和它的余角的和是90°
B、接連擲10次骰子都是6點朝上
C、一個有理數和它的倒數之和等于0
D、一個有理數小于它的倒數
4、下列事件中是必然事件的是( )
A、從一個裝有藍、白兩色球的缸里摸出一個球,摸出的球是白球
B、扎西的`自行車輪胎被釘子扎壞
C、卓瑪期末考試數學成績一定得滿分
D、將菜籽油滴入水中,菜籽油會浮在水面上
5、下列說法中,正確的是( )
A、生活中,如果一個事件不是不可能事件,那么它就必然發生
B、生活中,如果一個事件可能發生,那么它就是必然事件
C、生活中,如果一個事件發生的可能性很大,那么它也可能不發生
D、生活中,如果一個事件不是必然事件,那么它就不可能發生
6、同時投擲兩枚質地均勻的正方體骰子,骰子的六個面上分別刻有1到6的點數。下列事件中是不可能事件的是( )
A、點數之和為12 B、點數之和小于3
C、點數之和大于4且小于8 D、點數之和為13
7、某個事件發生的概率是,這意味著( )
A、在兩次重復實驗中該事件必有一次發生 B、在一次實驗中沒有發生,下次肯定發生
C、在一次實驗中已經發生,下次肯定不發生 D、每次實驗中事件發生的可能性是50%
8、在生產的100件產品中,有95件正品,5件次品。從中任抽一件是次品的概率為( )
A、0.05 B、0.5 C、0.95 D、95
9、有50個型號相同的乒乓球,其中一等品40個,二等品8個,三等品2個,現從中任取一個乒乓球,抽到一等品的概率是( )
A、 B、 C、 D、
10、卓瑪的文具盒中有兩支蠟筆:一支紅色的、一支綠色的;三支水彩筆:分別是黃色、紅色、黑色,任意拿出一支蠟筆和一支水彩筆,正好都是紅色的概率是( )
A、 B、 C、 D、
11、某燈泡廠的一次質量檢查中,從20xx個燈泡中抽查了100個,其中有6個不合格,那么在這20xx個燈泡中,估計有 個燈泡不合格。
12、隨意安排甲、乙、丙3人在3天節日中值班,每人值班1天。
(1)這3人的值班順序共有多少種不同的排列方法?
(2)其中甲排在乙之前的排法有多少種?
(3)甲排在乙之前的概率是多少?
學數學的竅門有哪些
學數學最重要的就是解題能力。要想會做數學題目,就要有大量的練習積累,知道各類型題目的解題步驟與方法,題目做多了就有手感了,再拿出類似的題目才會有解題思路。
其次是學會預習。解題思路不是直接就有的,也并非通過做幾道簡單的題目就能輕易獲得,而是在預習過程中不斷積累出來的。因此,預習在數學學習過程中起到了非常重要的作用。預習一方面能夠讓大家提前對數學知識有所了解,另一方面能夠培養數學獨立學習能力。
學數學必須多做題。理解了數學基本定義和知識點以后,就需要通過做對應習題去鞏固知識,多做多練才能更好地掌握所學知識,學數學也是看花容易繡花難的,只有真正動手去做題、經歷了實操過程能學會。
學好數學有什么技巧
1、有良好的學習興趣
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
2、建立良好的學習數學習慣
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
中考數學知識點總結8
1. 因式分把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.
3.公因式的確定:系數的最大公約數?相同因式的最低次冪.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事項:
(1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最后結果要求分解到每一個因式都不能分解為止;
(4)因式分解的最后結果要求每一個因式的'首項符號為正;
(5)因式分解的最后結果要求加以整理;
(6)因式分解的最后結果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數系數;(9)展開部分括號或全部括號;(10)拆項或補項.
7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.
中考數學知識點總結9
1.如果把解題比做打仗,那么解題者的“兵器”就是數學基礎知識,“兵力”就是數學基本方法,而調動數學基礎知識、運用數學思想方法的數學解題思想則正是“兵法”。
2.數學家存在的主要理由就是解決問題。因此,數學的真正的組成部分是問題和解答。“問題是數學的心臟”。
3.問題反映了現有水平與客觀需要的矛盾,對學生來說,就是已知和未知的矛盾。問題就是矛盾。對于學生而言,問題有三個特征:
(1)接受性:學生愿意解決并且具有解決它的知識基礎和能力基礎。
(2)障礙性:學生不能直接看出它的解法和答案,而必須經過思考才能解決。
(3)探究性:學生不能按照現成的的套路去解,需要進行探索,尋找新的處理方法。
4.練習型的問題具有教學性,它的結論為數學家或教師所已知,其之成為問題僅相對于教學或學生而言,包括一個待計算的答案、一個待證明的結論、一個待作出的圖形、一個待判斷的命題、一個待解決的實際問題。
5.“問題解決”有不同的解釋,比較典型的觀點可歸納為4種:
(1)問題解決是心理活動。面臨新情境、新課題,發現它與主客觀需要的矛盾而自己卻沒有現成對策時,所引起的尋求處理辦法的一種活動。
(2)問題解決是一個探究過程。把“問題解決”定義為“將先前已獲得的知識用于新的、不熟悉的情境的過程”。這就是說,問題解決是一個發現的過程、探索的過程、創新的過程。
(3)問題解決是一個學習目的。“學習數學的主要目的在于問題解決”。因而,學習怎樣解決問題就成為學習數學的根本原因。此時,問題解決就獨立于特殊的問題,獨立于一般過程或方法,也獨立于數學的具體內容。
(4)問題解決是一種生存能力。重視問題解決能力的培養、發展問題解決的能力,其目的之一是,在這個充滿疑問、有時連問題和答案都是不確定的世界里,學習生存的本領。
6.解題研究存在一些誤區,首先一個表現是,用現成的例子說明現成的觀點,或用現成的觀點解釋現成的例子。其次一個表現是,長期徘徊在一招一式的歸類上,缺少觀點上的提高或實質性的突破。第三個表現是,多研究“怎樣解”,較少問“為什么這樣解”。在這些誤區里,“解題而不立法、作答而不立論”。
7.人的思維依賴于必要的知識和經驗,數學知識正是數學解題思維活動的出發點與憑借。豐富的知識并加以優化的結構能為題意的本質理解與思路的迅速尋找創造成功的條件。解題研究的一代宗師波利亞說過:“貨源充足和組織良好的知識倉庫是一個解題者的重要資本”。
8.熟練掌握數學基礎知識的體系。對于中學數學解題來說,應如數學家珍說出教材的概念系統、定理系統、符號系統。還應掌握中學數學競賽涉及的基礎理論。深刻理解數學概念、準確掌握數學定理、公式和法則。熟悉基本規則和常用的方法,不斷積累數學技巧。
9.數學的`本質活動是思維。思維的對象是概念,思維的方式是邏輯。當這種思維與新事物接觸時,將出現“相容”和“不容”的兩種可能。出現“相容”時,產生新結果,且被原概念吸收,并發展成新概念;當出現“不容”時,則產生了所謂的問題。這時,思維出現迂回,甚至暫時退回原地,將原概念擴大或將原邏輯變式,直到新思維與事物相容為止。至此,也產生新的結果,也被原思維吸收。這就是一個思維活動的全過程。
10.解題能力,表現于發現問題、分析問題、解決問題的敏銳、洞察力與整體把握。其主要成分是3種基本的數學能力(運算能力、邏輯思維能力、空間想象能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。其基本要求包括:
(1)掌握解題的科學程序;
(2)掌握數學中各種常用的思維方法,如觀察、試驗、歸納、演繹、類比、分析、綜合、抽象、概括等;
(3)掌握解題的基本策略,能“因題制宜”地選擇對口的解題思路,使用有效的解題方法、調動精明的解題技巧;
(4)具有敏銳的直覺。應該明白,我們的數學解題活動是在縱橫交錯的數學關系中進行的,在這個過程中,我們從一種可能性過渡到另一種可能性時,并非對每一個數學細節都洞察無遺,并非總能借助于“三段論”的橋梁,而是在短時間內朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達到對某種數學對象的本質領悟:
11.解題具有實踐性與探索性的特征,“就像游泳,滑雪或彈鋼琴一樣,只能通過模仿和實踐來學到它……你想學會游泳,你就必須下水,你想成為解題的能手,你就必須去解題”,“尋找題解,不能教會,而只能靠自己學會”。
12.所謂解題經驗,就是某些數學知識、某些解題方法與某些條件的有序組合。成功是一種有效的有序組合,失敗是一種無效的無序組合(它從反面向我們提供有效的有序組合)。成功經驗所獲得的有序組合,就好像建筑上的預制構件(或稱為思維組塊),遇到合適的場合,可以原封不動地把它搬上去。
13.認為解題純粹是一種智能活動顯然是錯誤的;決心與情緒所起的作用非常重要。教育學生解題是一種意志教育。當學生求解那些對他來說并不太容易的題目時,他學會了敗而不餒,學會了贊賞微小的進展,學會了等待主要念頭的萌動,學會了當主要念頭出現后如何全力以赴,直撲問題的核心或主干;當一旦突破關卡,如何去占領問題的至高點,并冷靜地府視全局,從而得到問題的完善解決。如果學生在解題過程中沒有機會嘗盡為求解而奮斗的喜怒哀樂,那么他的數學解題訓練就在最重要的地方失敗了。
14.教師的例題教學要暴露自己思維的真實過程,老師備課時,遇上的曲折和錯誤不能隨草紙扔到廢紙堆。如果教師掩瞞了解題中的曲折,自己在講臺裝神弄巧,得心應手,左右逢源,把自己打扮成超人,將給學生的學習產生誤導。這樣的教師越高明,學生越自卑。
中考數學知識點總結10
一、知識點:
1、“三線八角”
①如何由線找角:一看線,二看型。同位角是“F”型;內錯角是“Z”型;同旁內角是“U”型。
②如何由角找線:組成角的三條線中的公共直線就是截線。
2、平行公理:
如果兩條直線都和第三條直線平行,那么這兩條直線也平行。簡述:平行于同一條直線的兩條直線平行。補充定理:
如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。簡述:垂直于同一條直線的兩條直線平行。
3、平行線的判定和性質:
判定定理條件同位角相等內錯角相等同旁內角互補結論兩直線平行兩直線平行兩直線平行條件兩直線平行兩直線平行兩直線平行性質定理結論同位角相等內錯角相等同旁內角互補
4、圖形平移的性質:
圖形經過平移,連接各組對應點所得的線段互相平行(或在同一直線上)并且相等。
5、三角形三邊之間的關系:
三角形的任意兩邊之和大于第三邊;三角形的任意兩邊之差小于第三邊。
若三角形的三邊分別為a、b、c,則abcab
6、三角形中的主要線段:
三角形的高、角平分線、中線。
注意:
①三角形的高、角平分線、中線都是線段。
②高、角平分線、中線的應用。
7、三角形的內角和:
三角形的3個內角的和等于180°;直角三角形的兩個銳角互余;
三角形的一個外角等于與它不相鄰的兩個內角的和;三角形的一個外角大于與它不相鄰的任意一個內角。
8、多邊形的內角和:
n邊形的內角和等于(n-2)180°;任意多邊形的外角和等于360°。
第八章冪的運算
nn
冪(power)指乘方運算的結果。a指將a自乘n次(n個a相乘)。把a看作乘方的結果,叫做a的n次冪。
對于任意底數a,b,當m,n為正整數時,有
mnm+n
aa=a(同底數冪相乘,底數不變,指數相加)mnm-n
a÷a=a(同底數冪相除,底數不變,指數相減)mnmn(a)=a(冪的乘方,底數不變,指數相乘)
nnn
(ab)=aa(積的乘方,把積的每一個因式乘方,再把所得的冪相乘)0
a=1(a≠0)(任何不等于0的數的0次冪等于1)-nn
a=1/a(a≠0)(任何不等于0的數的-n次冪等于這個數的n次冪的倒數)
n
科學記數法:把一個絕對值大于10(或者小于1)的整數記為a10的形式(其中1≤|a|<10),這種記數法叫做科學記數法.
復習知識點:
1.乘方的概念
求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在a中,a叫做底數,n叫做指數。
2.乘方的性質
(1)負數的奇次冪是負數,負數的偶次冪的正數。
2
n(2)正數的任何次冪都是正數,0的任何正整數次冪都是0。
第九章整式的乘法與因式分解
一、整式乘除法
單項式與單項式相乘,把它們的系數,相同字母分別相乘,對于只在一個單項式里含有的字
52525+27
母,則連同它的指數作為積的一個因式.acbc=(ab)(cc)=abc=abc注:運算順序先乘方,后乘除,最后加減
單項式相除,把系數與同底數冪分別相除作為商的因式,只在被除式里含有的字母,則連同它的指數作為商的一個因式
單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加,m(a+b+c)=ma+mb+mc注:不重不漏,按照順序,注意常數項、負號.本質是乘法分配律。
多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.
多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相乘(a+b)(m+n)=am+an+bm+bn
乘法公式:平方差公式:兩個數的和與這兩個數的差的積,等于這兩個數的平方差.
22
(a+b)(a-b)=a-b
完全平方公式:兩數和[或差]的平方,等于它們的平方和,加[或減]它們積的2
222
倍.(a±b)=a±2ab+b
因式分解:把一個多項式化成幾個整式積的形式,也叫做把這個多項式分解因式.因式分解方法:
1、提公因式法.關鍵:找出公因式
公因式三部分:
①系數(數字)一各項系數最大公約數;
②字母--各項含有的相同字母;
③指數--相同字母的最低次數;
步驟:
第一步是找出公因式;
第二步是提取公因式并確定另一因式.
需注意,提取完公因式后,另一個因式的項數與原多項式的項數一致,這一點可用來檢驗是否漏項.
注意:
①提取公因式后各因式應該是最簡形式,即分解到“底”;
②如果多項式的第一項的系數是負的,一般要提出“-”號,使括號內的第一項的系數是正的.
22
2、公式法.
①a-b=(a+b)(a-b)兩個數的平方差,等于這兩個數的和與這兩個數的差的積a、
222
b可以是數也可是式子
②a±2ab+b=(a±b)完全平方兩個數平方和加上或減去這兩個數的積的2倍,等于這兩個數的和[或差]的平方.3322
③x-y=(x-y)(x+xy+y)立方差公式
2
3、十字相乘(x+p)(x+q)=x+(p+q)x+pq因式分解三要素:
(1)分解對象是多項式,分解結果必須是積的形式,且積的因式必須是整式
(2)因式分解必須是恒等變形;
(3)因式分解必須分解到每個因式都不能分解為止.弄清因式分解與整式乘法的內在的關系:互逆變形,因式分解是把和差化為積的`形式,而整式乘法是把積化為和差
添括號法則:如括號前面是正號,括到括號里的各項都不變號,如括號前是負號各項都得改符號。用去括號法則驗證
第十章二元一次方程組
1、含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程(linearequationsoftwounknowns)。
2、含有兩個未知數的兩個一次方程所組成的方程組叫做二元一次方程組。
3、二元一次方程組中兩個方程的公共解叫做二元一次方程組的解。
4、代入消元法:把二元一次方程中一個方程的一個未知數用含另一個未知數的式子表示出來,再帶入另一個方程,實現消元,進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。
5、加減消元法:當方程中兩個方程的某一未知數的系數相等或互為相反數時,把這兩個方程的兩邊相加或相減來消去這個未知數,從而將二元一次方程化為一元一次方程,最后求得方程組的解,這種解方程組的方法叫做加減消元法,簡稱加減法.
6、二元一次方程組解應用題的一般步驟可概括為“審、找、列、解、答”五步,即:
(1)審:通過審題,把實際問題抽象成數學問題,分析已知數和未知數,并用字母表示其中的兩個未知數;
(2)找:找出能夠表示題意兩個相等關系;
(3)列:根據這兩個相等關系列出必需的代數式,從而列出方程組;
(4)解:解這個方程組,求出兩個未知數的值;
(5)答:在對求出的方程的解做出是否合理判斷的基礎上,寫出答案.
第十一章一元一次不等式
一元一次不等式
重點:不等式的性質和一元一次不等式的解法。
難點:一元一次不等式的解法和一元一次不等式解決在現實情景下的實際問題。知識點一:不等式的概念
1.不等式:
用“<”(或“≤”),“>”(或“≥”)等不等號表示大小關系的式子,叫做不等式.用“≠”表示不等關系的式子也是不等式.
要點詮釋:
(1)不等號的類型:
①“≠”讀作“不等于”,它說明兩個量之間的關系是不等的,但不能明確兩個量誰大誰小;
(2)要正確用不等式表示兩個量的不等關系,就要正確理解“非負數”、“非正數”、“不大于”、“不小于”等數學術語的含義。
2.不等式的解:
能使不等式成立的未知數的值,叫做不等式的解。要點詮釋:
由不等式的解的定義可以知道,當對不等式中的未知數取一個數,若該數使不等式成立,則這個數就是不等式的一個解,我們可以和方程的解進行對比理解,一般地,要判斷一個數是否為不等式的解,可將此數代入不等式的左邊和右邊利用不等式的概念進行判斷。
3.不等式的解集:
一般地,一個含有未知數的不等式的所有解,組成這個不等式的解集。求不等式的解集的過程叫做解不等式。如:不等式x-4<1的解集是x<5.不等式的解集與不等式的解的區別:解集是能使不等式成立的未知數的取值范圍,是所有解的集合,而不等式的解是使不等式成立的未知數的值.二者的關系是:解集包括解,所有的解組成了解集。要點詮釋:
不等式的解集必須符合兩個條件:
(1)解集中的每一個數值都能使不等式成立;
(2)能夠使不等式成立的所有的數值都在解集中。知識點
二:不等式的基本性質
基本性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變。符號語言表示為:如果,那么
基本性質2:不等式的兩邊都乘上(或除以)同一個正數,不等號的方向不變。
符號語言表示為:如果,并且,那么(或)。
基本性質3:不等式的兩邊都乘上(或除以)同一個負數,不等號的方向改變。
符號語言表示為:如果要點詮釋:,并且,那么(或)
(1)不等式的基本性質1的學習與等式的性質的學習類似,可對比等式的性質掌握;
(2)要理解不等式的基本性質1中的“同一個整式”的含義不僅包括相同的數,還有相同的單項式或多項式;
(3)“不等號的方向不變”,指的是如果原來是“>”,那么變化后仍是“>”;如果原來是“≤”,那么變化后仍是“≤”;“不等號的方向改變”指的是如果原來是“>”,那么變化后將成為“<”;如果原來是“≤”,那么變化后將成為“≥”;
(4)運用不等式的性質對不等式進行變形時,要特別注意性質3,在乘(除)同一個數時,必須先弄清這個數是正數還是負數,如果是負數,要記住不等號的方向一定要改變。知識點三:一元一次不等式的概念
只含有一個未知數,且含未知數的式子都是整式,未知數的次數是1,系數不為0.這樣的不等式,叫做一元一次不等式。要點詮釋:
(1)一元一次不等式的概念可以從以下幾方面理解:
①左右兩邊都是整式(單項式或多項式);
②只含有一個未知數;
③未知數的最高次數為1。
(2)一元一次不等式和一元一次方程可以對比理解。
相同點:二者都是只含有一個未知數,未知數的最高次數都是1,左右兩邊都是整式;不同點:一元一次不等式表示不等關系(用“>”、“<”、“≥”、“≤”連接),一元一次方程表示相等關系(用“=”連接)。知識點
四:一元一次不等式的解法
1.解不等式:
求不等式解的過程叫做解不等式。
2.一元一次不等式的解法:
與一元一次方程的解法類似,其根據是不等式的基本性質,解一元一次不等式的一般步驟為:
(1)去分母;
(2)去括號;
(3)移項;
(4)合并同類項;
(5)系數化為
1.要點詮釋:
(1)在解一元一次不等式時,每個步驟并不一定都要用到,可根據具體問題靈活運用
(2)解不等式應注意:
①去分母時,每一項都要乘同一個數,尤其不要漏乘常數項;
②移項時不要忘記變號;
③去括號時,若括號前面是負號,括號里的每一項都要變號;
④在不等式兩邊都乘(或除以)同一個負數時,不等號的方向要改變。
3.不等式的解集在數軸上表示:
在數軸上可以直觀地把不等式的解集表示出來,能形象地說明不等式有無限多個解,它對以后正確確定一元一次不等式組的解集有很大幫助。要點詮釋:
在用數軸表示不等式的解集時,要確定邊界和方向:
(1)邊界:有等號的是實心圓圈,無等號的是空心圓圈;
(2)方向:大向右,小向左規律方法指導(包括對本部分主要題型、思想、方法的總結)
1、不等式的基本性質是解不等式的主要依據。(性質2、3要倍加小心)
2、檢驗一個數值是不是已知不等式的解,只要把這個數代入不等式,然后判斷不等式是否成立,若成立,就是不等式的解;若不成立,則就不是不等式的解。
3、解一元一次不等式是一個有目的、有根據、有步驟的不等式變形,最終目的是將原不等式變為
或
的形式,其一般步驟是:
(1)去分母;
(2)去括號;
(3)移項;
(4)合并同類項;
(5)化未知數的系數為1。
這五個步驟根據具體題目,適當選用,合理安排順序。但要注意,去分母或化未知數的系數為1時,在不等式兩邊同乘以(或除以)同一個非零數時,如果是個正數,不等號方向不變,如果是個負數,不等號方向改變。
解一元一次不等式的一般步驟及注意事項變形名稱具體做法注意事項去分母
(1)不含分母的項不能漏乘
(2)注意分數線有括號作用,去掉分在不等式兩邊同乘以分母的最小公倍數母后,如分子是多項式,要加括號
(3)不等式兩邊同乘以的數是個負數,不等號方向改變。
(1)運用分配律去括號時,不要漏乘根據題意,由內而外或由外而內去括號均括號內的項可
(2)如果括號前是“”號,去括號時,括號內的各項要變號把含未知數的項都移到不等式的一邊(通7去括號移項移項(過橋)變號常是左邊),不含未知數的項移到不等式的另一邊把不等式兩邊的同類項分別合并,把不等合并同類項式化為或的形式合并同類項只是將同類項的系數相加,字母及字母的指數不變。
在不等式兩邊同除以未知數的系數,若且,則不等式的解集為;若系數化1且,則不等式的
(1)分子、分母不能顛倒
(2)不等號改不改變由系數的正負性決定。
則不
(3)計算順序:先算數值后定符號且,解集為;若且等式的解集為;若則不等式的解集為;
4、將一元一次不等式的解集在數軸上表示出來,是數學中數形結合思想的重要體現,要注意的是“三定”:一是定邊界點,二是定方向,三是定空實。
5、用一元一次不等式解答實際問題,關鍵在于尋找問題中的不等關系,從而列出不等式并求出不等式的解集,最后解決實際問題。
6、常見不等式的基本語言的意義:
(1)(3)(5)(7),則x是正數;
(2),則x是非正數;
(4),則x大于y;
(6),則x不小于y;
(8),則x是負數;,則x是非負數;,則x小于y;,則x不大于y;
(9)或,則x,y同號;
(10)或,則x,y異號;
(11)x,y都是正數,若,則;若,則;
(12)x,y都是負數,若,則;若,則
第十二章證明
教學目標:
1.掌握定義、命題、定理、逆命題、互逆命題等概念,知道一個命題是真命題,它的逆命題不一定是真命題。
2.基本事實是其真實性不加證明的真命題,弄清真命題與定理的區別。
3.會用舉反例說明一個命題是假命題;掌握三角形內角和定理的證明。重點:定義、命題、定理、逆命題、互逆命題等概念的理解與運用
難點:會用舉反例說明一個命題是假命題;掌握三角形內角和定理的證明。內容:
1.以基本事實:“同位角相等,兩直線平行”證明:
(1)“內錯角相等,兩直線平行”、“同旁內角互補,兩直線平行”、“平行于同一條直線的兩條直線平行”
2.基本事實:“過直線外一點,有且只有一條直線與這條直線平行”“兩直線平行,同位角相等”證明:
(1)兩只相平行,內錯角相等
(2)兩只相平行,同旁內角互補
(3)三角形內角和定理”
(4)直角三角形的兩個銳角互余
(5)有兩個銳角互余的三角形是直角三角形
(6)三角形的外角等于與它不相鄰的兩個外角的和
中考數學知識點總結11
中位線概念
(1)三角形中位線定義:連接三角形兩邊中點的線段叫做三角形的中位線。
(2)梯形中位線定義:連接梯形兩腰中點的線段叫做梯形的中位線。
注意(1)要把三角形的中位線與三角形的.中線區分開。三角形中線是連接一頂點和它的對邊中點的線段,而三角形中位線是連接三角形兩邊中點的線段。
(2)梯形的中位線是連接兩腰中點的線段而不是連結兩底中點的線段。
(3)兩個中位線定義間的聯系:可以把三角形看成是上底為零時的梯形,這時三角形的中位線就變成梯形的中位線。
中位線定理
(1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.
(2)梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.
中位線定理推廣
三角形有三條中位線,首尾相接時,每個小三角形面積都等于原三角形的四分之一,這四個三角形都互相全等。
中考數學知識點總結12
圓的定理:
1不在同一直線上的三點確定一個圓。
2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3圓是以圓心為對稱中心的中心對稱圖形
4圓是定點的'距離等于定長的點的集合
5圓的內部可以看作是圓心的距離小于半徑的點的集合
6圓的外部可以看作是圓心的距離大于半徑的點的集合
7同圓或等圓的半徑相等
8到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
中考數學知識點復習口訣
有理數的加法運算
同號相加一邊倒;異號相加“大”減“小”,
符號跟著大的跑;絕對值相等“零”正好。
合并同類項
合并同類項,法則不能忘,只求系數和,字母、指數不變樣。
去、添括號法則
去括號、添括號,關鍵看符號,
括號前面是正號,去、添括號不變號,
括號前面是負號,去、添括號都變號。
一元一次方程
已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。
平方差公式
平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方公式
完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;
首±尾括號帶平方,尾項符號隨中央。
因式分解
一提(公因式)二套(公式)三分組,細看幾項不離譜,
兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,
四項仔細看清楚,若有三個平方數(項),
就用一三來分組,否則二二去分組,
五項、六項更多項,二三、三三試分組,
以上若都行不通,拆項、添項看清楚。
單項式運算
加、減、乘、除、乘(開)方,三級運算分得清,
系數進行同級(運)算,指數運算降級(進)行。
一元一次不等式解題步驟
去分母、去括號,移項時候要變號,同類項合并好,再把系數來除掉,
兩邊除(以)負數時,不等號改向別忘了。
一元一次不等式組的解集
大大取較大,小小取較小,小大、大小取中間,大小、小大無處找。
一元二次不等式、一元一次絕對值不等式的解集
大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
分式混合運算法則
分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);
乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;
加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;
變號必須兩處,結果要求最簡。
中考數學知識點歸納:平面直角坐標系
平面直角坐標系
1、平面直角坐標系
在平面內畫兩條互相垂直且有公共原點的數軸,就組成了平面直角坐標系。
其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點,不屬于任何象限。
2、點的坐標的概念
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。
中考數學知識點總結13
1、有理數的.加法運算:
同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好、
2、合并同類項:
合并同類項,法則不能忘,只求系數和,字母、指數不變樣、
3、去、添括號法則:
去括號、添括號,關鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號、
4、一元一次方程:
已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒、
5、平方差公式:
平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆、
1、完全平方公式:
完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;
首±尾括號帶平方,尾項符號隨中央、
2、因式分解:
一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚、
3、單項式運算:
加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行、
4、一元一次不等式解題的一般步驟:
去分母、去括號,移項時候要變號,同類項合并好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了、
5、一元一次不等式組的解集:
大大取較大,小小取較小,小大、大小取中間,大小、小大無處找、
一元二次不等式、一元一次絕對值不等式的解集:
大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
中考數學知識點總結14
一、重要概念
1、數的分類及概念
數系表:
說明:“分類”的原則:1)相稱(不重、不漏)
2)有標準
2、非負數:正實數與零的統稱。(表為:x≥0)
常見的非負數有:
性質:若干個非負數的和為0,則每個非負擔數均為0。
3、倒數:①定義及表示法
②性質:≠1/a(a≠±1);中,a≠0;a1時,1/a1;D。積為1。
4、相反數:①定義及表示法
②性質:≠0時,a≠—a;與—a在數軸上的位置;C。和為0,商為—1。
5、數軸:①定義(“三要素”)
②作用:A。直觀地比較實數的.大小;B。明確體現絕對值意義;C。建立點與實數的一一對應關系。
6、奇數、偶數、質數、合數(正整數—自然數)
定義及表示:
奇數:2n—1
偶數:2n(n為自然數)
7、絕對值:①定義(兩種):
代數定義:
幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。
②│a│≥0,符號“││”是“非負數”的標志;③數a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現,其關鍵一步是去掉“││”符號。
中考數學知識點總結15
1、二次函數的概念
一般地,如果,那么y叫做x 的二次函數。
叫做二次函數的一般式。
2、二次函數的`像
二次函數的像是一條關于對稱的曲線,這條曲線叫拋物線。
拋物線的主要特征:
①有開口方向;②有對稱軸;③有頂點。
3、二次函數像的畫法
五點法:
(1)先根據函數解析式,求出頂點坐標,在平面直角坐標系中描出頂點M,并用虛線畫出對稱軸
(2)求拋物線與坐標軸的交點:
當拋物線與x軸有兩個交點時,描出這兩個交點A,B及拋物線與y軸的交點C,再找到點C的對稱點D。將這五個點按從左到右的順序連接起來,并向上或向下延伸,就得到二次函數的像。
當拋物線與x軸只有一個交點或無交點時,描出拋物線與y軸的交點C及對稱點D。由C、M、D三點可粗略地畫出二次函數的草。如果需要畫出比較精確的像,可再描出一對對稱點A、B,然后順次連接五點,畫出二次函數的像。
【中考數學知識點總結】相關文章:
中考數學圓知識點總結01-13
中考數學知識點總結05-24
[實用]中考數學知識點總結05-24
【優】中考數學知識點總結06-09
中考數學知識點總結(通用)06-09
中考數學知識點總結【熱門】06-09
中考數學知識點03-15
中考數學必考知識點03-12
中考數學知識點歸納總結優秀05-08
(經典)中考數學知識點總結15篇06-09