抽屜原理教學設(shè)計優(yōu)秀
作為一名為他人授業(yè)解惑的教育工作者,常常要寫一份優(yōu)秀的教學設(shè)計,借助教學設(shè)計可以更大幅度地提高學生各方面的能力,從而使學生獲得良好的發(fā)展。那么寫教學設(shè)計需要注意哪些問題呢?下面是小編整理的抽屜原理教學設(shè)計優(yōu)秀,歡迎閱讀與收藏。
抽屜原理教學設(shè)計優(yōu)秀1
教學目標:
1.使學生能理解抽取問題中的一些基本原理,并能解決有關(guān)簡單的問題。
2.體會數(shù)學與日常生活的聯(lián)系,了解數(shù)學的價值,增強應(yīng)用數(shù)學的意識。
教學重點:
抽取問題。
教學難點:
理解抽取問題的基本原理。
教學過程:
一、創(chuàng)設(shè)情境,復習舊知
1、出示復習題:
師:老師這兒有一個問題,不知道哪位同學能幫助解答一下?
2、課件出示:把3個蘋果放進2個抽屜里,總有一個抽屜至少放2個蘋果,為什么?
3、學生自由回答。
二、教學例2
1、出示:盒子里有同樣大小的紅球和藍球各4個。要想摸出的球一定有2個同色的,最少要摸出幾個球?
(1)組織學生讀題,理解題意。
教師:你們能猜出結(jié)果嗎?
組織學生猜一猜,并相互交流。
指名學生匯報。
學生匯報時可能會答出:只摸4個球就可以了,至少要摸出5個球……
教師:能驗證嗎?
教師拿出準備好的紅球及藍球,組織學生到講臺前來動手摸一摸,驗證匯報結(jié)果的正確性。
(2)教師:剛才我們通過驗證的方法得出了結(jié)論,聯(lián)系前面所學的知識,這是一個什么問題?
2、組織學生議一議,并相互交流。再指名學生匯報。
教師:上面的問題是一個抽屜問題,請同學們找一找:“抽屜”是什么?“抽屜”有幾個?
組織學生議一議,并相互交流。
指名學生匯報,使學生明確:抽屜就是顏色數(shù)。(板書)
教師:能用例1的知識來解答嗎?
組織學生議一議,并相互交流。
指名學生匯報。
使學生明確:只要分的物體比抽屜多,就能保證總有一個抽屜至少放蕩2個球,因此要保證摸出兩個同色的球,摸出球的數(shù)量至少要比顏色的種數(shù)多一。
(3)組織學生對例題的解答過程議一議,相互交流,理解解決問題的方法。
學生不難發(fā)現(xiàn):只要摸出的球比它們的.顏色種數(shù)多1,就能保證有兩個球同色。
3、做一做
第1題。
1、獨立思考,判斷正誤。
2、同學交流,說明理由。其中“370名學生中一定有兩人的生日是同一天”與例1中的“抽屜原理”是一類,“49名學生中一定有5人的出生月份相同”則與例2的類型相同。教師要引導學生把“生日問題”轉(zhuǎn)化成“抽屜問題”。因為一年中最多有366天,如果把這366天看作366個抽屜,把370個學生放進366個抽屜,人數(shù)大于抽屜數(shù),因此總有一個抽屜里至少有兩個人,即他們的生日是同一天。而一年中有12個月,如果把這12個月看作12個抽屜,把49個學生放進12個抽屜,49÷12=4……1,因此,總有一個抽屜里至少有5(即4+1)個人,也就是他們的生日在同一個月。
三、鞏固練習
完成課文練習十二第1、3題。
四、總結(jié)評價
1、師:這節(jié)課你有哪些收獲或感想?
五、布置作業(yè)
1.做一做。把紅、黃、藍三種顏色的小棒各10根混在一起。如果讓你閉上眼睛,每次最少拿出幾根才能保證一定有2根同色的小棒?保證有2對同色的小棒呢?
2.試一試。給下面每個格子涂上紅色或藍色。觀察每一列,你有什么發(fā)現(xiàn)?如果只涂兩列的話,結(jié)論有什么變化呢?
3、拓展練習(選做)
(1)任意給出5個非0的自然數(shù)。有人說一定能找到3個數(shù),讓這3個數(shù)的和是3的倍數(shù)。你信不信?
(2)把1~8這8個數(shù)任意圍成一個圓圈。在這個圈上,一定有3個相鄰的數(shù)之和大于13。你知道其中的奧秘嗎?
抽屜原理教學設(shè)計優(yōu)秀2
教學內(nèi)容:
義務(wù)教育課程標準實驗教科書六年級下冊《抽屜原理》。
教學目標:
1.知識與能力:初步了解抽屜原理,運用抽屜原理知識解決簡單的實際問題。
2.過程和方法:經(jīng)歷抽屜原理的探究過程,通過動手操作、分析、推理等活動,發(fā)現(xiàn)、歸納、總結(jié)原理。
3.情感與價值:通過“抽屜原理”的靈活應(yīng)用感受數(shù)學的魅力;提高同學們解決問題的能力和興趣。
教學重點:
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學難點:
理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教具學具:
課件、撲克牌、每組都有相應(yīng)數(shù)量的筆筒、鉛筆、書。
教學過程:
一、創(chuàng)設(shè)情景導入新課
師:同學們玩過撲克牌嗎?撲克牌有幾種花色?取出兩張王牌,在剩下的52張撲克牌中任意取出5張,我不看牌,我敢肯定的說:這5張牌至少有兩張是同花色,大家相信嗎?(師生演示)
師:想知道老師為什么能做出如此準確的判斷嗎?這其中蘊含一個有趣的數(shù)學原理——抽屜原理。(板書課題)這節(jié)課我們就一起來研究這個數(shù)學原理。
師:通過今天的學習,你想知道些什么?
二、自主操作探究新知
(一)活動1
課件出示:把4枝鉛筆放到3個筆筒里,可以怎么放?
師:你們擺擺看,會有什么發(fā)現(xiàn)?把你們發(fā)現(xiàn)的結(jié)果用自己喜歡的方式記錄下來。
1、學生動手操作,師巡視,了解情況。
2、匯報交流說理活動
①師:有什么發(fā)現(xiàn)?誰能說說看?
師根據(jù)學生的回答用數(shù)字在黑板上記錄。板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1)
師:你們是這樣記錄的嗎?
師:還可以用圖記錄。我把用圖記錄的用課件展示出來。 ②再認真觀察記錄,還有什么發(fā)現(xiàn)?
板書:總有一個筆筒里至少有2枝鉛筆。
③怎樣擺可以一次得出結(jié)論?(啟發(fā)學生用平均分的擺法,引出用除法計算。)板書:4÷3=1(枝)1(枝)
④師:這種方法是不是很快就能確定總有一個筆筒里至少有幾枝鉛筆呢?(學生交流)
⑤把5枝鉛筆放進4個筆筒里呢?還用擺嗎?板書:5÷4=1(枝)1(枝)
⑥課件出示:把6枝鉛筆放進5個筆筒呢?
把7枝鉛筆放進6個筆筒呢?
把10枝鉛筆放進9個筆筒呢?
把100枝鉛筆放進99個筆筒呢?
板書:7÷6=1(枝)1(枝)
10÷9=1(枝)1(枝)
100÷99=1(枝)1(枝)
⑦觀察這些算式你發(fā)現(xiàn)了什么規(guī)律?
預設(shè)學生說出:至少數(shù)=商+余數(shù)
師:是不是這個規(guī)律呢?我們來試一試吧!
3、深化探究得出結(jié)論
課件出示:5只鴿子飛回3個鴿籠,至少有兩只鴿子要飛進同一個鴿籠里,為什么?
①學生活動
②交流說理活動
預設(shè):生1:題目的.說法是錯誤的,用商加余數(shù),應(yīng)該至少有3只鴿子要飛進同一個鴿籠。
生2:不同意!不是“商加余數(shù)”是“商加1”。
③師:到底是“商加余數(shù)”還是“商加1”?誰的結(jié)論對呢?在小組里進行研究、討論。
④師:誰能說清楚?板書:5÷3=1(只)2(只)至少數(shù)=商+1
(二)活動二
課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
1、分組操作后匯報
板書:5÷2=2(本)1(本)
7÷2=2(本)1(本)
9÷2=2(本)1(本)
2、那么探究到現(xiàn)在,大家認為怎樣才能確定總有一個抽屜至少有幾本書?
生:至少數(shù)=商+1
3、師:我同意大家的討論。我們這個發(fā)現(xiàn)就是有趣的“抽屜原理”,(點題)。“抽屜原理”又稱“鴿籠原理”,最先是由19世紀德國數(shù)學家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實際問題中有著廣泛的應(yīng)用。用它可以解決許多有趣的問題,讓我們來試試好嗎?
三、靈活應(yīng)用解決問題
1、解釋課前提出的游戲問題。
2、課件出示:8只鴿子飛回3個鴿舍,不管怎樣分,總有一個鴿舍至少有幾只鴿子?
3、課件出示:任意13人中,至少有兩人的出生月份相同。為什么?
4、課件出示:任意367名學生中,一定存在兩名學生,他們在同一天過生日。為什么?
四、暢談感受教學結(jié)束
同學們,今天這節(jié)課有什么感受?(抽生談?wù)劊瑤熆偨Y(jié)。)
抽屜原理教學設(shè)計優(yōu)秀3
教材分析
《抽屜原理的認識》是人教版數(shù)學六年級下冊第五章內(nèi)容。在數(shù)學問題中有一類與“存在性”有關(guān)的問題。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明是通過什么方式把這個存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“抽屜原理”。“抽屜原理”最先是由19世紀的德國數(shù)學家狄里克雷(Dirichlet)運用于解決數(shù)學問題的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。、
學情分析
本節(jié)課我根據(jù)“教師是組織者、引導者和合作者”這一理念,以學生參與活動為主線,創(chuàng)建新型的教學結(jié)構(gòu)。通過幾個直觀的例子,用假設(shè)法向?qū)W生介紹“抽屜原理”,學生難以理解,感覺抽象。在教學時,我結(jié)合本班實際,用學生熟悉的吸管和杯子貫穿整個課堂,讓學生通過動手操作,在活動中真正去認識、理解“抽屜原理”學生學得輕松也容易接受。
教學目標
1、經(jīng)歷“抽屜原理”的`探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2、通過操作發(fā)展 的類推能力,形成抽象的數(shù)學思維。
3、通過“抽屜原理”的靈活應(yīng)用,感受數(shù)學的魅力。
教學重點和難點
【教學重點】
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
【教學難點】
理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學內(nèi)容:
六年級數(shù)學下冊70頁、71頁例1、例2。
教學目標:
1、理解“抽屜原理”的一般形式。
2、經(jīng)歷“抽屜原理”的探究過程,體會比較、推理的學習方法,會用“抽屜原理”解決簡單的的實際問題。
4、感受數(shù)學的魅力,提高學習興趣,培養(yǎng)學生的探究精神。
教學重點:
經(jīng)歷“抽屜原理”探究過程,初步了解“抽屜原理”。
教學難點:
理解“抽屜原理”的一般規(guī)律。
教學準備:
相應(yīng)數(shù)量的杯子、鉛筆、課件。
教學過程:
一、情景引入
讓五位學生同時坐在四把椅子上,引出結(jié)論:不管怎么坐,總有一把椅子上至少坐了兩名學生。
師:同學們,你們想知道這是為什么嗎?今天,我們一起研究一個新的有趣的數(shù)學問題。
二、探究新知
1、探究3根鉛筆放到2個杯子里的問題。
師:現(xiàn)在用3根鉛筆放在2個杯子里,怎么放?有幾種放法?大家擺擺看,有什么發(fā)現(xiàn)?
擺完后學生匯報,教師作相應(yīng)的板書(3,0)(2,1),引導學生觀察理解說出:不管怎么放總有一個杯子至少有2根鉛筆。
(1)師:依此推下去,把4根鉛筆放在3個杯子又怎么放呢?會有這種結(jié)論嗎?讓學生動手操作,做好記錄,認真觀察,看看有什么發(fā)現(xiàn)?
(2)、學生匯報放結(jié)果,結(jié)合學具操作解釋。教師作相應(yīng)記錄。
(4,0,0) (3,1,0) (2,2,0) (2,1,1)
(學生通過操作觀察、比較不難發(fā)現(xiàn)有與上個問題同樣結(jié)論。)
(3)學生回答后讓學生閱讀例1中對話框:不管怎么放,總有一個杯子里至少放進2根鉛筆。
師:“總有”是什么意思?“至少”呢?讓學生理解它們的含義。
師:怎樣放才能總有一個杯子里鉛筆數(shù)最少?引導學生理解需要“平均放”。
教師出示課件演示讓學生進一步理解“平均放”。
3、探究n+1根鉛筆放進n個杯子問題
師:那我們再往下想,6根鉛筆放在5個杯子里,你感覺會有什么結(jié)論?
讓學生思考發(fā)現(xiàn)不管怎么放,總有一個杯子里至少有2根鉛筆。
師:7根鉛筆放進6個杯子,你們又有什么發(fā)現(xiàn)?
學生回答完之后,師提出:是不是只要鉛筆數(shù)比杯子數(shù)多1,總有一個杯子里至少放進2根鉛筆?讓學生進行小組合作討論匯報。
學生匯報后引導學生用實驗驗證想法。
師:把10根小棒放在9個杯子里呢,總有一個杯子里至少有幾根小棒?(2根)
師:把100根小棒放在99個杯子里,會有什么結(jié)論呢?(2根)
4、總結(jié)規(guī)律
師:剛才我們研究的都是鉛筆數(shù)比杯子數(shù)多1,而余數(shù)也正巧是1的,如果余下鉛筆數(shù)比杯子多2、多3、多4的呢,結(jié)論又會怎樣?
(1)探究把5根鉛筆放在3個杯子里,不管怎么放,總有一個杯子里至少有幾根鉛筆?為什么?
a、先同桌擺一擺,再說一說。
b、你怎么分的?
學生匯報后,教師演示:將5根筆平均分到3個杯子里里,余下的兩根怎么辦?是把余下的兩根無論放到哪個杯子里都行嗎?怎樣保證至少?
引導學生知道再把兩根鉛筆平均分,分別放入兩個杯子里。
(2)探究把15根鉛筆放在4個杯子里的結(jié)論。
(3)、引導學生總結(jié)得出結(jié)論:商加1是總有一個杯子至少個數(shù)。
抽屜原理教學設(shè)計優(yōu)秀4
教學內(nèi)容:
人教版六年級下冊第五單元數(shù)學廣角
教學目標:
1、初步了解“抽屜原理”。
2、引導學生用操作枚舉或假設(shè)的方法探究“抽屜原理”的一般規(guī)律。
3、會用抽屜原理解決簡單的實際問題。
4、經(jīng)歷從具體的抽象的探究過程,初步了解抽屜原理,提高學生又根據(jù)有條理的進行思考和推理的能力,體會比較的`學習方法。
教學重點:抽屜原理的理解和簡單應(yīng)用。
教學難點:找出實際問題與抽屜原理的內(nèi)在聯(lián)系。
教學過程:
一、開展小游戲,引入新課。
師:在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?
師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。
師:開始。
師:都坐下了嗎?
生:坐下了。
師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩位同學”我說得對嗎?
生:對!
師:想知道老師為什么會做出如此準確的判斷嗎?其實這里面蘊含著一個有趣的數(shù)學原理——抽屜原理。
二、實驗探索
第一步:研究4枝鉛筆放進3個文具盒,有哪些不同的放法?你們又能從這些方法中發(fā)現(xiàn)什么有趣的現(xiàn)象?
1、(出示)師:把4枝筆放進3個文具盒,有哪些不同的放法?(請一生示范)你們又能從這些放法中發(fā)現(xiàn)什么有趣的現(xiàn)象?
2、師:接下來,就請同學們以小組為單位進行實驗操作,并把放法和發(fā)現(xiàn)填在記錄卡上。
放法
文具盒1
文具盒2
文具盒3
最多放幾枝
A
B
C
D
我們的發(fā)現(xiàn)
3、小組匯報交流。
(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)
生:不管怎么放,總有1個文具盒里至少有2枝鉛筆。
師:“總有”是什么意思?
生:一定有。
師:“至少”是什么意思?
生:不少于2枝,可能是3枝或4枝。
生小結(jié):把4枝鉛筆放進3個文具盒,總有一個文具盒至少放進2枝鉛筆。(最多有2枝或2枝以上)
4、師:把4枝筆飯放進3個文具盒里,不管怎么放,總有一個文具盒里至少有2枝鉛筆。這是我們通過實際操作發(fā)現(xiàn)了這個結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結(jié)論,找出至少數(shù)呢?
生:我們發(fā)現(xiàn)如果每個文具盒里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個文具盒里,總有一個文具盒里至少有2枝鉛筆。
(學生操作演示)
師:這種分法,實際就是先怎么分的?
生眾:平均分
師:為什么要先平均分?
生1:要想發(fā)現(xiàn)存在著“總有一個文具盒里一定至少有2枝”,先平均分,余下1枝,不管放在那個文具盒里,一定會出現(xiàn)“總有一個文具盒里一定至少有2枝”。
生2:這樣分,只分一次就能確定總有一個文具盒至少有幾枝筆了。
把筆盡量每個文具盒里都放,還要盡量平均放。怎樣用算式表示呢?
4÷3=1……11+1=2
5、那照這樣的思路:把6枝鉛筆放進5個文具盒,怎樣想?(用鉛筆操作演示)6÷5=1……11+1=2
把7枝鉛筆放進6個文具盒,怎樣想?……
100枝鉛筆放進99個文具盒呢?
師提問:發(fā)現(xiàn)了什么規(guī)律?
生小結(jié),師整理:鉛筆數(shù)比文具盒數(shù)多1,不管怎么放,總有一個文具盒里至少放進2枝鉛筆。(同桌之間說一說)
第二步:研究鉛筆數(shù)比文具盒數(shù)不是多1的現(xiàn)象。
1、師:研究到這兒,還想繼續(xù)研究嗎?還有哪些值得我們繼續(xù)研究的問題?(生自主提問:如不是多1,什么是抽屜原理等等。)
2、師:如果鉛筆數(shù)比文具盒數(shù)不是多1,而是多2、3……,總有一個文具盒里至少會有幾枝鉛筆?
(出示:把5本書放進2個抽屜里,總有一個抽屜里至少會有幾本書呢?)
生獨立思考,在小組內(nèi)交流,匯報。
師:許多同學都沒有再擺學具,用的什么方法?
生:平均分。把5本書平均分到2個抽屜里,每個抽屜里放2本書,還剩一本書,無論放在哪個抽屜里,總有一個抽屜里至少有3本書。生:5÷2=2……12+1=3
(出示:5本書放進3個抽屜呢?8本書放進5個抽屜呢?)
5÷3=1……21+1=28÷5=1……31+3=4
師:至少數(shù)為什么不是“商+余數(shù)”?(小組討論,匯報)
4、對比觀察算式,你能發(fā)現(xiàn)求至少數(shù)的規(guī)律嗎?
物體數(shù)÷抽屜數(shù)=商……余數(shù)至少數(shù)=商+1
5、總結(jié)抽屜原理,運用抽屜原理的關(guān)鍵是什么?(找準物體數(shù)和抽屜數(shù)),閱讀相關(guān)資料。
a÷n=b……c(c≠0)把a個物體放進n個抽屜里,總有一個抽屜里至少放進(b+1)個物體。
三、應(yīng)用原理。
1、請你試一試。(口答,指出什么是物體數(shù),什么是抽屜數(shù))
(1)6只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一鴿舍,為什么?
(2)把13只小兔關(guān)在5個籠中,至少有幾只兔子要關(guān)在同一個籠里?
(3)有5袋餅干,每袋10快,發(fā)給6個小朋友,總有一個小朋友至少分到幾塊餅干?
2、下面的說法對嗎?說說你的理由。
向東小學6年級共有370名學生,其中六(2)班有49名學生。
A、六年級里至少有2名學生的生日是同一天。
(370個物體,366個抽屜)
B、六(2)班只有5名學生的生日在同一月。
(49個物體,12個抽屜,“只有”就是一定)
C、六(2)至少有25位學生是同一性別。
3、玩“猜?lián)淇恕钡挠螒颉?/p>
抽掉大小王,抽出5張牌,至少幾張是同花色?5÷4=1……11+1=2
抽15張至少有幾張數(shù)字相同?15÷13=1……21+1=2
4、學生把學生生活中能用抽屜原理解釋的現(xiàn)象寫下來。
留心觀察+細心思考=偉大發(fā)現(xiàn)
四、全課總結(jié)。
抽屜原理教學設(shè)計優(yōu)秀5
教學內(nèi)容:
教科書第68、69頁例1、2。
教學目標:
1、使學生經(jīng)歷將一些實際問題抽象為代數(shù)問題的過程,并能運用所學知識解決有關(guān)實際問題。
2、能與他人交流思維過程和結(jié)果,并學會有條理地、清晰地闡述自己的觀點。
教學重點:分配方法。
教學難點:分配方法。
教學方法:列舉法、分析法
學習方法:嘗試法、自主探究法
教學用具:課件
教學過程:
一、定向?qū)W(3分)
(一)游戲引入
師:同學們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準備了3把椅子,請4個同學上來,誰愿來?
1、游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2、討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?
游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的.一種現(xiàn)象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。
(二)揭示目標
理解并掌握解決鴿巢問題的解答方法。
二、自主學習(8分)
1、看書68頁,閱讀例1:把4枝鉛筆放進3個文具盒中,可以怎么放?有幾種情況?
(1)理解“總有”和“至少”的意思。
(2)理解4種放法。
2、全班同學交流思維的過程和結(jié)果。
3、跟蹤練習。
68頁做一做:5只鴿子飛回3個鴿舍,至少有2只鴿子要飛進同一個鴿舍里。為什么?
(1)說出想法。
如果每個鴿舍只飛進1只鴿子,最多飛回3只鴿子,剩下2只鴿子還要飛進其中的一個鴿舍或分別飛進其中的兩個鴿舍。所以至少有2只鴿子飛進同一個鴿舍。
(2)嘗試分析有幾種情況。
(3)說一說你有什么體會。
抽屜原理教學設(shè)計優(yōu)秀6
【教學內(nèi)容】
《義務(wù)教育課程標準實驗教科書·數(shù)學》六年級下冊第68頁。
【教學目標】
1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2、 通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3、 通過“抽屜原理”的靈活應(yīng)用感受數(shù)學的魅力。
【教學重點】
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
【教學難點】
理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
【教具、學具準備】
每組都有相應(yīng)數(shù)量的盒子、鉛筆、書。
【教學過程】
一、課前游戲引入。
師:同學們在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?(學生上來后)
師:聽清要求 ,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。
師:開始。
師:都坐下了嗎?
生:坐下了。
師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個同學”我說得對嗎?
生:對!
師:老師為什么能做出準確的判斷呢?道理是什么?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。下面我們開始上課,可以嗎?
【點評】教師從學生熟悉的“搶椅子”游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象,激發(fā)了學生的學習興趣,為后面開展教與學的活動做了鋪墊。
二、通過操作,探究新知
(一)教學例1
1、出示題目:有3枝鉛筆,2個盒子,把3枝鉛筆放進2個盒子里,怎么放?有幾種不同的放法?
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況 (3,0) (2,1)
【點評】此處設(shè)計教師注意了從最簡單的`數(shù)據(jù)開始擺放,有利于學生觀察、理解,有利于調(diào)動所有的學生積極參與進來。
師:5個人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學。3支筆放進2個盒子里呢?
生:不管怎么放,總有一個盒子里至少有2枝筆?
是:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。
師:那么,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)
師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況。
(4,0,0)
(3,1,0)
(2,2,0)
(2,1,1),師:還有不同的放法嗎?
生:沒有了。
師:你能發(fā)現(xiàn)什么?
生:不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:“總有”是什么意思?
生:一定有
師:“至少”有2枝什么意思?
生:不少于兩只,可能是2枝,也可能是多于2枝?
師:就是不能少于2枝。(通過操作讓學生充分體驗感受)
師:把3枝筆放進2個盒子里,和把4枝筆飯放進3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現(xiàn)了這個結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結(jié)論呢?
學生思考——組內(nèi)交流——匯報
師:哪一組同學能把你們的想法匯報一下?
組1生:我們發(fā)現(xiàn)如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。
師:你能結(jié)合操作給大家演示一遍嗎?(學生操作演示)
師:同學們自己說說看,同位之間邊演示邊說一說好嗎?
師:這種分法,實際就是先怎么分的?
生眾:平均分
師:為什么要先平均分?(組織學生討論)
生1:要想發(fā)現(xiàn)存在著“總有一個盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?
師:同意嗎?那么把5枝筆放進4個盒子里呢?(可以結(jié)合操作,說一說)
師:哪位同學能把你的想法匯報一下,生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把6枝筆放進5個盒子里呢?還用擺嗎?
生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把7枝筆放進6個盒子里呢?
把8枝筆放進7個盒子里呢?
把9枝筆放進8個盒子里呢?……
:
你發(fā)現(xiàn)什么?
生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。
【點評】教師關(guān)注了“抽屜原理”的最基本原理,物體個數(shù)必須要多于抽屜個數(shù),化繁為簡,此處確實有必要提領(lǐng)出來進行教學。在學生自主探索的基礎(chǔ)上,教師注意引導學生得出一般性的結(jié)論:只要放的鉛筆數(shù)盒數(shù)多1,總有一個盒里至少放進2支。通過教師組織開展的扎實有效的教學活動,學生學的有興趣,發(fā)展了學生的類推能力,形成比較抽象的數(shù)學思維。
抽屜原理教學設(shè)計優(yōu)秀7
教學目標:
1.知識與能力目標:
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。通過猜測、驗證、觀察、分析等數(shù)學活動,建立數(shù)學模型,發(fā)現(xiàn)規(guī)律。滲透“建模”思想。
2.過程與方法目標:
經(jīng)歷從具體到抽象的探究過程,提高學生有根據(jù)、有條理地進行思考和推理的能力。
3.情感、態(tài)度與價值觀目標:
通過“抽屜原理”的靈活應(yīng)用,提高學生解決數(shù)學問題的能力和興趣,感受到數(shù)學文化及數(shù)學的魅力。
教學重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學準備:教具:5個杯子,6根小棒;學具:每組5個杯子,6根小棒。
教學過程:
一、游戲激趣,初步體驗。
師:同學們,你們玩過撲克牌嗎?下面我們用撲克牌來玩?zhèn)游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請5位同學上來各抽一張,我們來驗證一下。如果再請五位同學來抽,我還敢這樣肯定地說,你們相信嗎?其實這里面蘊藏著一個非常有趣的數(shù)學原理,想不想研究啊?
二、操作探究,發(fā)現(xiàn)規(guī)律。
(一)經(jīng)歷“抽屜原理”的探究過程,理解原理。
1.研究小棒數(shù)比杯子數(shù)多1的情況。
師:今天這節(jié)課我們就用小棒和杯子來研究。
師:如果把3根小棒放在2個杯子里,該怎樣放?有幾種放法?
學生分組操作,并把操作的結(jié)果記錄下來。
請一個小組匯報操作過程,教師在黑板上記錄。
師:觀察這所有的擺法,你們發(fā)現(xiàn)總有一個杯子里至少有幾根小棒?板書:總有一個杯子里至少有。
師:依此推想下去,4根小棒放在3個杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發(fā)現(xiàn)?
學生分組操作,并把操作的結(jié)果記錄下來。
請一個小組代表匯報操作過程,教師在黑板上記錄。
師:觀察所有的擺法,你發(fā)現(xiàn)了什么?這里的“總有”是什么意思?“至少”又是什么意思?
師:那如果把6根小棒放在5個杯子里,猜一猜,會有什么樣的結(jié)果?
師:怎樣驗證猜測的結(jié)果對不對,你又什么好方法?引導學生不再一一列舉,用平均分的方法來找答案。并用算式表示分的結(jié)果:6÷5=1……1
師:那如果用這種方法,你知道把7根小棒放在6個杯子里,把10根小棒放在9個杯子里,把100根小棒放在99個杯子里,會有什么樣的結(jié)果呢?你又從中發(fā)現(xiàn)了什么規(guī)律呢?
師:我們發(fā)現(xiàn)了小棒的.數(shù)量比杯子的數(shù)量多1,總有一個杯子里至少有2根小棒。那如果小棒的數(shù)量比杯子的數(shù)量多2、多3,又會有什么樣的結(jié)果呢?
2、研究小棒數(shù)比杯子數(shù)多2、多3的情況。
師:如果把5根小棒放在3個杯子里,會有什么結(jié)果?
引導:先平均分,每個杯子里分得1根小棒,余下的2根小棒又該怎么分呢?
師:把7根小棒放在3個杯子里,會有什么結(jié)果呢?為什么?
3、研究小棒數(shù)比杯子數(shù)的2倍多、3倍多…等情況。
師:如果把9根小棒放在4個杯子里,把15根小棒放在4個杯子里,分別又會有什么結(jié)果?
小組內(nèi)討論,再請同學說結(jié)果和理由。
4、總結(jié)規(guī)律。
師:我們將小棒看做物體、把杯子看做抽屜,你發(fā)現(xiàn)了什么規(guī)律?
總結(jié):把m個物體放在n個抽屜里(m﹥n),總有一個抽屜至少有“商+1”個物體。
5、介紹抽屜原理。
“抽屜原理”又稱“鴿巢原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,這一原理在解決實際問題中有著廣泛的應(yīng)用。“抽屜原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。
三、應(yīng)用“抽屜原理”,感受數(shù)學的魅力。
1、把5本書放進2個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?為什么?
先思考:這里是把什么看做物體?什么看做抽屜?再說結(jié)果和理由。
2.8只鴿子飛回3個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?
3、向東小學六年級共有370名學生,其中六(2)班有49名學生。請問下面兩人說的對嗎?為什么?
(1)六年級里至少有兩人的生日是同一天。
(2)六(2)班中至少有5人是同一個月出生的。
4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?
5、師:開課時我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會有2張牌是同一花色的?你能用所學的抽屜原理來解釋嗎?
四、全課小結(jié)。
說一說:今天這節(jié)課,我們又學習了什么新知識?(師生共同對本節(jié)課的內(nèi)容進行小結(jié))
五、布置作業(yè)。
課本73頁練習十二第2.4題。
六、板書設(shè)計。
數(shù)學廣角——抽屜原理
抽屜原理教學設(shè)計優(yōu)秀8
導學內(nèi)容:P70——71例1、例2,完成做一做及練習十二1、2題
導學目標
1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2、通過“抽屜原理”的靈活應(yīng)用感受數(shù)學的魅力。
導學重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
導學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
預習學案
同學們玩過撲克牌嗎?撲克牌有幾種花色?取出兩張王牌,在剩下的52張撲克牌中任意取出5張,我不看牌,我敢肯定的說:這5張牌至少有兩張是同花色,大家相信嗎?
導學案
通過今天的學習,你想知道些什么?
自主操作 探究新知
(一)活動1
課件出示:
把3本書進2個抽屜中,有幾種方法?請同學們放一放,再把你的想法在小組內(nèi)交流。
1、學生動手操作,師巡視,了解情況。
2、匯報交流 說理活動
你們有什么發(fā)現(xiàn)?誰能說說看?
根據(jù)學生的回答用數(shù)字在黑板上記錄。板書:(3,0)(2,1)(1,2,)(0,3)
還可以用什么方法記錄?我把用圖記錄的用課件展示出來。
①再認真觀察記錄,還有什么發(fā)現(xiàn)?
(總有一個抽屜里至少有2本書。)
②怎樣放可以一次得出結(jié)論?(啟發(fā)學生用平均分的`放法,引出用除法計算。)板書:3÷2=1(本)……1(本)
③這種方法是不是很快就能確定總有一個抽屜里至少有幾本書呢?(學生交流)
④把4本書放進3個抽屜里呢?還用擺嗎?板書:4÷3=1(本)……1(本)
⑤課件出示:把6本書放進5個抽屜呢?
把7本書放進6個抽屜呢?
把10本書放進9個抽屜呢?
把100本書放進99個抽屜呢?
板書:7÷6=1(本)……1(本)
10÷9=1(本)……1(本)
100÷99=1(本)……1(本)
⑥觀察這些算式你發(fā)現(xiàn)了什么規(guī)律?
預設(shè)學生說出:至少數(shù)=商+余數(shù)
師:是不是這個規(guī)律呢?我們來試一試吧!
3、深化探究 得出結(jié)論
課件出示:7只鴿子飛回5個鴿籠,至少有兩只鴿子要飛進同一個鴿籠里,為什么?
①學生活動
②交流說理活動
③到底是“商加余數(shù)”還是“商加1”?誰的結(jié)論對呢?在小組里進行研究、討論。
④誰能說清楚?板書:5÷3=1(只)……2(只)至少數(shù)=商+1
(二)活動二
課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
分組操作后匯報
板書:5÷2=2(本)……1(本)
7÷2=3(本)……1(本)
9÷2=4(本)……1(本)
那么探究到現(xiàn)在,大家認為怎樣才能確定總有一個抽屜至少有幾本書?
(至少數(shù)=商+1)
我同意大家的討論。我們這個發(fā)現(xiàn)就是有趣的“抽屜原理”, “抽屜原理”又稱“鴿籠原理”,最先是由19世紀德國數(shù)學家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實際問題中有著廣泛的應(yīng)用。用它可以解決許多有趣的問題,讓我們來試試好嗎?
靈活應(yīng)用 解決問題
1、解釋課前提出的游戲問題。
2、8只鴿子飛回3個鴿舍,不管怎樣分,總有一個鴿舍至少有幾只鴿子?
3、任意13人中,至少有兩人的出生月份相同。為什么?
4、任意367名學生中,一定存在兩名學生,他們在同一天過生日。為什么?
暢談感受:同學們,今天這節(jié)課有什么感受?
課堂檢測
一、填空
1、7只鴿子飛進5個鴿舍,至少有( )只鴿子要飛進同伴的鴿舍里。
2、有9本書,要放進2個抽屜里,必須有一個抽屜至少要放( )本書。
3、四年級兩個班共有73名學生,這兩個班的學生至少有( )人是同一月出生的。
4、任意給出3個不同的自然數(shù),其中一定有2個數(shù)的和是( )數(shù)。
二、選擇
1、5個人逛商店共花了301元錢,每人花的錢數(shù)都是整數(shù),其中至少有一人花的錢數(shù)不低于( )元。
A、60 B、61 C、62 D、59
2、3種商品的總價是13元,每種商品的價格都是整數(shù),至少有一種商品的價格不低于( )元。
A、3 B、4 C、5 D、無法確定
三、解決問題
1、現(xiàn)有5把鎖的各1把鑰匙混在一起跟鎖對不上號了,請問最少試幾次就可能全部對上號?
2、六、一班四組有男女同學各5名,把他們的名字分別用10個數(shù)字代替,至少要點幾個數(shù)字,才能保證叫到兩名男生或兩名女生?
課后拓展
1、六、二班有學生35人,李老師至少要準備多少本練習本,才能保證有一個人的練習本在兩本或兩本以上?
2、從1、2、3……100,這100個連續(xù)自然數(shù)中,任意取出51個不相同的數(shù),其中必有兩個數(shù)互質(zhì),這是為什么呢?
板書設(shè)計
抽屜原理
5÷2=2……1 至少有3只
7÷2=3……1 至少有4只
9÷2=4……1 至少有5只
11÷2=5……1 至少有6只
至少數(shù)=商數(shù)+1
抽屜原理教學設(shè)計優(yōu)秀9
桌上有十個蘋果,要把這十個蘋果放到九個抽屜里,無論怎樣放,我們會發(fā)現(xiàn)至少會有一個抽屜里面至少放兩個蘋果。這一現(xiàn)象就是我們所說的“抽屜原理”。
教學理念:
激趣是新課導入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學習把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W生感興趣又易于理解的內(nèi)容。特別是對教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建模”,使復雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標要求。
教學目標:
1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學的魅力。
教學重難點:
重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學過程:
一、課前游戲引入。
師:同學們在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?(學生上來后)
師:聽清要求 ,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。
師:開始。
師:都坐下了嗎?
生:坐下了。
師:我沒有看到他們坐的'情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個同學”我說得對嗎?
生:對!
師:老師為什么能做出準確的判斷呢?道理是什么?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。(抽屜原理)
二、通過操作,探究新知
(一)探究例1
1、研究3枝鉛筆放進2個文具盒。
(1)要把3枝鉛筆放進2個文具盒 ,有幾種放法?請同學們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。
(2)反饋:兩種放法:(3,0)和(2,1)。
(3)從兩種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個文具盒至少放進2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)
(4)“總有”什么意思?(一定有)
(5)“至少”有2枝什么意思?(不少于2枝)
小結(jié):在研究3枝鉛筆放進2個文具盒時,同學們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個文具盒放進2枝鉛筆)
2、研究4枝鉛筆放進3個文具盒。
(1)要把4枝鉛筆放進3個文具盒里,有幾種放法?請同學們動手擺一擺,再把你的想法在小組內(nèi)交流。
(2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
(3)從四種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個筆盒至少有2枝鉛筆)
(4)你是怎么發(fā)現(xiàn)的?
(5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個文具盒放進2枝鉛筆”。如果要讓每個文具盒里放的筆盡可能的少,你覺得應(yīng)該要怎樣放?(每個文具盒都先放進一枝,還剩一枝不管放進哪個文具盒,總會有一個文具盒至少有2枝筆)(你真是一個善于思想的孩子。)
(6)這位同學運用了假設(shè)法來說明問題,你是假設(shè)先在每個文具盒里放1枝鉛筆,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)
(7)誰能用算式來表示這位同學的想法?(5÷4=1…1)商1表示什么?余數(shù)1表示什么?怎么辦?
(8)在探究4枝鉛筆放進3個文具盒的問題,同學們的方法有兩種,一是枚舉了所有放法,找規(guī)律,二是采用了“假設(shè)法”來說明理由,你覺得哪種方法更明了更簡單?
3、類推:把5枝鉛筆放進4個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把6枝鉛筆放進5個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把7枝鉛筆放進6個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把100枝鉛筆放進99個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
4、從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個文具盒里至少放進2枝鉛筆。)
5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個筆盒至少有2枝鉛筆。”
6、小結(jié):剛才我們分析了把鉛筆放進文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時,總有一個文具盒至少放進2枝鉛筆。
這就是今天我們要學習的抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?鉛筆相當于我們要準備放進抽屜的物體,那么文具盒就相當于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個抽屜里放進了2個物體。”
7、在我們的生活中,常常會遇到抽屜原理,你能不能舉個例子?在課前我們玩的游戲中,有沒有抽屜原理?
過渡:同學們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學們的思維也在不知不覺中提升了許多,那么讓我們再來研究這樣一組問題。
(二)探究例2
1、研究把5本書放進2個抽屜。
(1)把5本書放進2個抽屜會有幾種情況?(5,0)、(4,1)和(3,2)
(2)從三種情況中,我們可以得到怎樣的結(jié)論呢?(總有一個抽屜至少放進了3本書)
(3)還可以怎樣理解這個結(jié)論?先在每個抽屜里放進2本,剩下的1本放進任何一個抽屜,這個抽屜就有3本書了。
(4)可以把我們的想法用算式表示出來:5÷2=2…1(商2表示什么,余數(shù)1表示什么)2+1=3表示什么?
2、類推:如果把7本書放進2個抽屜中,至少有一個抽屜放進4本書。
如果把9本書放進2個抽屜中。至少有一個抽屜放進5本書。
如果把11本書放進3個抽屜中。至少有一個抽屜放進4本書。你是怎樣想的?(11÷3=3…2)商3表示什么?余數(shù)2表示什么?3+1=4表示什么?
3、小結(jié):從以上的學習中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時,我們可以運用假設(shè)法,把物體盡可量多地“平均分”給各個抽屜,總有一個抽屜比平均分得的物體數(shù)多1。)
4、經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,個個都是了不起的數(shù)學家。 “抽屜原理”最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用。“抽屜原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。
5、做一做:
7只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一個佶舍里。為什么?
8只鴿子飛回3個鴿舍,至少有3只鴿子要飛時同一個鴿舍里。為什么?
(先讓學生獨立思考,在小組里討論,再全班反饋)
三、遷移與拓展
下面我們一起來放松一下,做個小游戲。
我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?
四、總結(jié)全課
這節(jié)課,你有什么收獲?
抽屜原理教學設(shè)計優(yōu)秀10
(一)小結(jié)
鴿巢問題的解答方法是什么?
物體的數(shù)量大于抽屜的.數(shù)量,總有一個抽屜里至少放進(商+1)個物體。
(二)檢測
1、填空
(1)7只鴿子飛進5個鴿舍,至少有( )只鴿子要飛進同伴的鴿舍里。
(2)有9本書,要放進2個抽屜里,必須有一個抽屜至少要放( )本書。
(3)四年級兩個班共有73名學生,這兩個班的學生至少有( )人是同一月出生的。
(4)任意給出3個不同的自然數(shù),其中一定有2個數(shù)的和是( )數(shù)。
2、選擇
(1)5個人逛商店共花了301元錢,每人花的錢數(shù)都是整數(shù),其中至少有一人花的錢數(shù)不低于( )元。
a、60 b、61 c、62 d、59
(2)3種商品的總價是13元,每種商品的價格都是整數(shù),至少有一種商品的價格不低于( )元。
a、3 b、4 c、5 d、無法確定
3、幼兒園老師準備把15本圖畫書分給14個小朋友,結(jié)果是什么?
六、作業(yè)(6分)
完成課本練習十二第2、4題。
板書
抽屜原理
物體的數(shù)量大于抽屜的數(shù)量,總有一個抽屜至少放進(商+1)物體。
抽屜原理教學設(shè)計優(yōu)秀11
1、出示例2
把7本書放進3個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?(1)合作交流有幾種放法。
不難得出,總有一個抽屜至少放進3本。
(2)指名說一說思維過程。
如果每個抽屜放2本,放了6本書。剩下的1本還要放進其中一個抽屜,所以至少有1個抽屜放進3本書。
2、如果一共有8本書會怎樣呢10本呢?
3、你能用算式表示以上過程嗎?你有什么發(fā)現(xiàn)?
7÷3=2……1(至少放3本)
8÷3=2……2(至少放4本)
10÷3=3……1(至少放5本)
4、做一做
11只鴿子飛回4個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?
四、質(zhì)疑探究(5分)
1、鴿巢問題怎樣求?
小結(jié):先平均分配,再把余數(shù)進行分配,得出的`就是一個抽屜至少放進的本數(shù)。
2、做一做。
69頁做一做2題。
【抽屜原理教學設(shè)計優(yōu)秀】相關(guān)文章:
抽屜原理優(yōu)秀教學設(shè)計優(yōu)秀06-16
抽屜原理教學設(shè)計11-12
抽屜原理教學設(shè)計04-18
《抽屜原理》教學設(shè)計02-22
《抽屜原理》教學設(shè)計優(yōu)秀(精選10篇)05-22
《抽屜原理》教學設(shè)計通用04-28
《抽屜原理》教學設(shè)計14篇03-05
公開課《抽屜原理》教學設(shè)計07-03