两个人做人爱视频免费,97久久精品人人搡人妻人人玩,欧洲精品码一区二区三区,999zyz玖玖资源站永久

我要投稿 投訴建議

因數和倍數優秀教學設計

時間:2023-03-20 22:45:41 教學設計 我要投稿
  • 相關推薦

因數和倍數優秀教學設計(通用10篇)

  在小學數學教學中,因數和倍數是學習的重點,在教學的時候很多教師都用直觀教材引入乘法算式,然后直接講說因數和倍數之間的關系。接下來小編為你整理了人教版因數和倍數教學設計,一起來看看吧。

因數和倍數優秀教學設計(通用10篇)

  因數和倍數優秀教學設計 篇1

  教學目標:

  1、理解和掌握因數和倍數的概念,認識他們之間的聯系和區別。

  2、學會求一個數的因數或倍數的方法,能夠熟練的求出一個數的因數或倍數。

  3、知道一個數的因數的個數是有限的,一個數的倍數的個數是無限的。

  教學重點:

  掌握找一個數的因數和倍數的方法。

  教學難點:

  理解和掌握因數和倍數的概念。

  教學準備:

  課件

  教學過程:

  一、創設情境,引入新課

  師:我和你們的關系是……?

  生:師生關系。

  師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。是啊,人與人之間的關系是相互的。再比如:我們班的曹雪飛與賀正博之間是同桌關系,他們之間的關系是相互依存的,不能單獨存在,我們可以說曹雪飛是賀正博的同桌,或者說賀正博是曹雪飛的同桌,而不能說曹雪飛是同桌!在數學王國里,在整數乘法中也存在著這樣相互依存的關系,這節課,我們一起探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)

  (設計意圖:先讓學生體會關系,再通過同桌關系讓學生體會相互依存,不能獨立存在,進而為因數與倍數的相互依存關系打下基礎。)

  二、探究新知

  (一)1、出示主題圖,仔細觀察,你得到了哪些數學信息?

  學生說:圖上有兩行飛機,每行六架,一共有12架。(注意培養學生提取數學信息的能力和語言表達能力,即:數學語言要求簡練嚴謹)

  教師 :你們能夠用乘法算式表示出來嗎?

  學生說出算式,教師板書:2×6=12

  2. 出示:因為2×6=12

  所以2是12的因數,6也是12的因數;

  12是2的倍數,12也是6的倍數。

  (注:由乘法算式理解因數和倍數相互依存,不能獨立存在。)

  3.教師出示圖2:師:根據圖上的內容,可以寫出怎樣的算式?

  3×4=12

  從這道算式中,你知道誰是誰的因數?誰是誰的倍數嗎?(讓學生自己說一說,進而加深因數倍數關系的認識。)

  教師小結:因數和倍數是相互依存的,為了方便,我們在研究因數與倍數時,我們所說的數是整數,一般不包括0.

  4、師:誰來說一道乘法算式考考大家。

  (指名生說一說)

  5、讓其他學生來說一說誰是誰的因數誰是誰的倍數。

  (注:可以讓幾位學生互相說一說。)

  6、看來都難不住你們,那老師來考考你們:18÷3=6在這道算式中,誰來說說誰是誰的因數誰是誰的倍數。

  (設計意圖:18÷3=6是為了培養學生思維的逆向性)

  (二)找因數:

  1、師:我們知道了因數與倍數之間的關系,從上面的研究中,我們還可以知道,一個數的因數還不止一個12的因數有: 1,2,3,4,6,12. 那么怎樣求一個數的因數呢?

  出示例1:18的因數有哪幾個?

  注意:請同學們四人以小組討論,在找18的因數中如何做到不重復,不遺漏。

  學生嘗試完成:匯報

  (18的因數有: 1,2,3,6,9,18)

  師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)

  師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

  2、用這樣的方法,請你再找一找36的因數有那些?

  匯報36的因數有: 1,2,3,4,6,9,12,18,36

  師:你是怎么找的?

  舉錯例(1,2,3,4,6,6,9,12,18,36)

  師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)

  師:18和36的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

  請同學們觀察一個數的因數有什么特點。

  在教師引導下,學生總結出:任何一個數的因數,最小的一定是( ),而最大的一定是( ),因數的個數是有限的。

  (設計意圖:培養學生探索、歸納、總結、概括的'能力。)

  3、其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如 18的因數

  1、2、3、6、9、18

  小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?

  從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

  (三)找倍數:

  1、我們學會找一個數的因數了,那如何找一個數的倍數呢?2的倍數你能找出來嗎?

  匯報:2、4、6、8、10、16、……

  師:為什么找不完?

  你是怎么找到這些倍數的?

  (生:只要用2去乘1、乘2、乘3、乘4、…)

  那么2的倍數最小是幾?最大的你能找到嗎?

  2、再找3和5的倍數。

  3的倍數有:3,6,9,12,……

  你是怎么找的?(用3分別乘以1,2,3,……倍)

  5的倍數有:5,10,15,20,……

  師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示 :2的倍數,3的倍數,5的倍數

  師:我們知道一個數的因數的個數是有限的,那么一個數的倍數個數是怎么樣的呢? 讓學生觀察2、3、5的倍數,說一說一個數的倍數有什么特點。

  學生試著總結:一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。

  三、課堂小結:

  通過今天這節課的學習,你有什么收獲?

  學生匯報這節課的學習所得。

  四、拓展延伸。

  1、教材16頁練習二第5題。學生在小組中討論交流:這四位同學的說法是否正確?為什么?

  2、教材第15頁練習二第1題。組織學生獨立完成,然后在小組中互相交流檢查。

  因數和倍數優秀教學設計 篇2

  一、教學目標

  (一)知識與技能

  理解因數和倍數的意義以及兩者之間相互依存的關系,掌握找一個數的因數和倍數的方法,發現一個數的倍數、因數中最大的數、最小的數,及因數和倍數個數方面的特征。

 。ǘ┻^程與方法

  通過整數的乘除運算認識因數和倍數的意義,自主探索和總結出求一個數的因數和倍數的方法。

  (三)情感態度和價值觀

  在探索的過程中體會數學知識之間的內在聯系,在解決問題的過程中培養學生思維的有序性和條理性。

  二、教學重難點

  教學重點:理解因數和倍數的含義。

  教學難點:自主探索有序地找一個數的因數和倍數的方法。

  三、教學準備

  教學課件。

  四、教學過程

 。ㄒ唬├斫庖驍岛捅稊档囊饬x

  教學例1:

  1、觀察算式的特點,進行分類。

 。1)仔細觀察算式的特點,你能把這些算式分類嗎?

 。2)交流學生的分類情況。(預設:學生會根據算式的計算結果分成兩類)

  第一類是被除數、除數、商都是整數;第二類是被除數、除數都是整數,而商不是整數。

  2、明確因數和倍數的意義。

  (1)同學們,在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。例如,12÷2=6,我們就說12是2的倍數,2是12的因數。12÷6=2,我們就說12是6的倍數,6是12的因數。

 。2)在第一類算式中找一個算式,說一說,誰是誰的因數?誰是誰的倍數?

 。3)強調一點:為了方便,在研究倍數與因數的時候,我們所說的數指的是自然數(一般不包括0)。

  【設計意圖】引導學生從“整數的除法算式”中認識因數和倍數的意義,簡潔明了,同時為學習因數和倍數的依存關系進行有效鋪墊。

  3、理解因數和倍數的依存關系。

  (1)獨立完成教材第5頁“做一做”。

 。2)我們能不能說“4是因數”“24是倍數”呢?表述時應該注意什么?

  【設計意圖】引導學生在理解的基礎上進行正確表述:因數和倍數是相互依存的,不是單獨存在的。我們不能說4是因數,24是倍數,而應該說4是24的因數,24是4的倍數。

  4、理解一個數的“因數”和乘法算式中的“因數”的區別以及一個數的“倍數”與“倍”的區別。

 。1)今天學的一個數的“因數”與以前乘法算式中的“因數”有什么區別呢?

  課件出示:

  乘法算式中的“因數”是相對于“積”而言的,可以是整數,也可以是小數、分數;而一個數的“因數”是相對于“倍數”而言的,它只能是整數。

 。2)今天學的“倍數”與以前的“倍”又有什么不同呢?

  “倍數”是相對于“因數”而言的,只適用于整數;而“倍”適用于小數、分數、整數。

 。3)交流匯報。

  【設計意圖】“一個數的因數和倍數”與學生已學過的乘法算式中的“因數”以及“倍”的概念既有聯系又有區別,學生比較容易混淆,這也是學習一個數的“因數”和“倍數”意義的難點。通過觀察、對比、交流,引導學生發現一個數的“因數”和乘法算式中的“因數”的區別以及一個數的“倍數”與“倍”的區別。

  (二)找一個數的因數

  教學例2:

  1、探究找18的因數的方法。

  (1)18的因數有哪些?你是怎么找的?

 。2)交流方法。

  預設:方法一:根據因數和倍數的意義,通過除法算式找18的因數。

  因為18÷1=18,所以1和18是18的因數。

  因為18÷2=9,所以2和9是18的因數。

  因為18÷3=6,所以3和6是18的因數。

  方法二:根據尋找哪兩個整數相乘的積是18,尋找18的因數。

  因為1×18=18,所以1和18是18的因數。

  因為2×9=18,所以2和9是18的因數。

  因為3×6=18,所以3和6是18的因數。

  2、明確18的因數的表示方法。

 。1)我們怎樣來表示18的因數有哪些呢?怎樣表示簡潔明了?

 。2)交流方法。

  預設:列舉法,18的因數有:1,2,3,6,9,18。

  圖示法(如下圖所示)。

  3、練習找一個數的因數。

 。1)你能找出30的因數有哪些嗎?36的因數呢?

  (2)怎樣找才能不遺漏、不重復地找出一個數的'所有因數?

  【設計意圖】讓學生通過自主探索、交流,獲得找一個數的因數的不同方法,在練習中體會“一對一對”有序地找一個數的因數,避免遺漏或重復。初步感受一個數的因數的個數是有限的,以及“最大因數、最小因數”的特征。

  (三)找一個數的倍數

  教學例3:

  1、探究找2的倍數的方法。

 。1)2的倍數有哪些?你是怎么找的?

 。2)交流方法。

  預設:方法一:利用除法算式找2的倍數。

  因為2÷2=1,所以2是2的倍數。

  因為4÷2=2,所以4是2的倍數。

  因為6÷2=3,所以6是2的倍數!

  方法二:利用乘法算式找2的倍數。

  因為2×1=2,所以2是2的倍數。

  因為2×2=4,所以4是2的倍數。

  因為2×3=6,所以6是2的倍數。……

 。3)2的倍數能寫完嗎?你能繼續找嗎?寫不完怎么辦?

 。4)根據前面的經驗,試著表示出2的倍數有哪些?(預設:列舉法、圖示法)

  2、練習找一個數的倍數。

  你能找出3的倍數有哪些嗎?5的倍數呢?

  【設計意圖】在理解“倍數”的基礎上,讓學生進一步體會有序思考的必要性。初步感受一個數的倍數的個數是無限的,以及“最小倍數”的特征。

 。ㄋ模┮粋數的因數與倍數的特征

  1、從前面找因數和倍數的過程中,你有什么發現?

  2、討論交流。

  3、歸納總結。

  預設:一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身;一個數的倍數的個數是無限的,沒有最大的倍數,最小的倍數是它本身。1是所有非零自然數的因數。

  (五)鞏固練習

  1、課件出示教材第7頁練習二第1題。

 。1)想一想,怎樣找不會遺漏、不會重復?

 。2)哪些數既是36的因數,也是60的因數?

  【設計意圖】通過練習,讓學生再次體會“1是所有非零自然數的因數”“一個數最大的因數是它本身”和“一個數的因數的個數是有限的”。同時,滲透兩個數的“公因數”的意義。

  2、課件出示教材第7頁練習二第3題。

  (1)學生獨立完成,交流答案。

  (2)思考:5的倍數有什么特征?

  【設計意圖】滲透5的倍數的特征。

  3、課件出示教材第7頁練習二第5題。

 。1)學生獨立完成,交流答案。

 。2)你能改正錯誤的說法嗎?

 。┤n總結,交流收獲

  這節課我們學了哪些知識?你有什么收獲?

  因數和倍數優秀教學設計 篇3

  教學目標:

  1、通過動手操作和寫不同的乘法算式,認識倍數和因數。

  2、依據倍數和因數的含義和已有的乘除法知識,自主探索并總結找一個數的倍數和因數的方法。

  3、在探索中,培養學生抽象,概括的能力,滲透事物之間相互聯系、相互依存的辯證唯物主義的觀點。

  教學重點、難點分析:

  由于學生對辨析、理清除盡和整除的關系、整除的兩種讀法等易混淆的概念,使學生明確了一個數是否是另一個數的倍數或因數時,必須是以整除為前提,因數和倍數是相互依存的概念,不能獨立存在。所以本節課的教學我把重點定位于理解因數和倍數的含義。教學難點是自主探索并總結找一個數的倍數和因數的方法。

  教學課時:

  人教版五年級下冊第二單元《因數與倍數》第一課時

  教具學具準備:

  1、學生每人準備12個大小完全相同的小正方形,一張寫有自己學號的卡片。

  2、教師準備多媒體課件。

  一、創設情景,明確探究目標

  師:人與人之間存在著許多種關系,我和你們的關系是……?

  生:師生關系。

  師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。在數學中,數與數之間也存在著多種關系,這一節課,我們一起探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)

  1、操作激活。

  師:我們已經認識了哪幾類數?

  生:自然數,小數,分數。

  師:現在我們來研究自然數中數與數之間的關系。請你們用12個小正方形擺成不同的長方形,并根據擺成的不同情況寫出乘、除算式。

  2、全班交流。

  1×12=12 2×6=12 3×4=12

  12×1=12 6×2=12 4×3=12

  12÷1=12 12÷2=6 12÷3=4

  12÷12=1 12÷6=2 12÷4=3

  師:在這3組乘、除法算式中,都有什么共同點?

  生匯報。

  師:(指著第②組)像這樣的乘、除法式子中的三個數之間的關系還有一種說法,你們想知道嗎?請看課本p12。

  師:2和6與12的關系還可以怎樣說呢?

  生:2和6是12的因數,12是2的倍數,也是6的倍數。

  師:也就是說,2和12、6的關系是因數和倍數的關系,這幾組算式中,誰和誰還有因數和倍數的關系?

  小組合作,交流匯報。

  師:說得真好,從上面3組算式中,我們知道1,2,3,4,6,12都是12的因數。

  揭示課題:今天我們要根據這些算式研究數學新本領。因數和倍數。

  師:你能不能用同樣的方法說說另一道算式?

 。ㄖ该f一說)

  師:你有沒有明白因數和倍數的關系了?

  那你還能找出12的其他因數嗎?

  3、舉例內化:

  你能寫出一個算式,讓你的同桌找一找因數和倍數嗎?(學生互說,教師巡視找出典型例子)

  4、下面的說法對嗎?說出理由。

 。1)48是6的倍數。

 。2)在13÷4=3……1中,13是4的倍數。

 。3)因為3×6=18,所以18是倍數,3和6是因數。

  師:第(3)題有兩種不同的意見,請反對意見的同學說說理由。

  生:因為沒有說明18是誰的倍數,所以不對。

  師:你認為怎樣說才正確呢?

  生:我認為應該這么說:18是3和6的倍數,3和6是18的因數。

  師強調:在說倍數(或因數)時,必須說明誰是誰的倍數(或因數)。不能單獨說誰是倍數(或因數),也就是說:因數和倍數不能單獨存在。

  二、自主探究,找因數和倍數

  1、拓展提升,主動建構:

  ⑴遷移嘗試:請學生試著找出36的所有因數。

 、平涣鞣椒ǎ航處熂磿r捕捉開發學生在課堂上的基礎性教學資源,并及時創生為生成性的教學資源,引導學生在交流中評價,在評價中探究,在發現中建構。預計學生會有這樣幾種情況出現:一是寫得多與少的區別,二是找的方法上的區別。具體表現為:一是無序、沒有方法地寫出了一些,如2,3,6,而且僅此寫出了幾個;二是有順序地用乘法( )×( )=36的方法,一對一對地寫出了1,36,2,18,3,12,4,9,6,但沒有按照從小到大的順序寫;三是用除法36÷( )=( )的方法想,而且是有順序地從小到大全部寫出: 1,2,3,4,6,9,12,18,36。

 、菃⒌纤伎迹涸鯓诱也拍懿恢貜筒贿z漏?

  小組合作,自主探究,匯報交流。

  找一個數的因數時要做到不重復也不遺漏,方法可以有:

  用乘法( )×( )=36的方法,一對一對地寫;

  或者是用除法36÷( )=( )的方法想,而且是有順序地從小到大全部寫。

  36的因數有:1,2,3,4,6,9,12,18,36。(板書)

 、仍囈辉囌20的所有因數。

 、山榻B36的因數的另一種寫法----集合

  用集合形式寫18的因數

  2、創設情境,自主探究:

  請學生寫出6的倍數。預計學生在寫6的倍數時,會有這樣幾種情況出現:一是寫得多與少的'區別,二是找的方法上的區別。具體表現為:一是無序、沒有方法地寫出了一些,6二是有順序地用乘法口訣寫6,三是用加法的方法,每次遞加6;四是用除法想,( )÷6=1、( )÷6=2、( )÷6=3的方法寫。同時可能還會有學生在教師宣布時間到的時候會因為6的倍數寫不完而抱怨時間太少。

  請寫得又多又快的同學介紹自己的好方法、小竅門。在此基礎上交流評價小結方法。(評價時突出有序思維的策略)

  3、遷移內化,自主探究:

 、艊L試遷移:請學生嘗試遷移,用自己喜歡的方法寫出2的倍數和5,4,7的倍數。

  2的倍數有:2,4,6,8,10,12……

  5的倍數有:5,10,15,20,25……

 、埔龑в^察:請學生觀察以上這些數的倍數,有什么發現?

  (一個數的倍數的個數是無限的,一個數最小的倍數是它本身。)

 。3)還記得因數嗎,出示課件

  觀察:看一看這些數的因數,你有什么發現?(36最小的因數是1,最大的是36,……一個數最小的因數是1,最大的因數是它本身。)

  三、變式拓展,實踐應用

  指導學生做書本“練習二”的第2題和第3題。

  四、全課總結

  師:今天這節課我們一起學習了“約數和倍數”,你有哪些收獲?

  課堂練習:游戲:“我的朋友在哪里?”

  游戲規則:

  (1)一位同學提出所要找的朋友的要求,例:“我的因數在哪里?”或“我的倍數在哪里?”

  (2)相應學號的同學站起來,其他同學判斷是否正確。

  作業安排:

  引導學生根據實際猜老師年齡,給出范圍:老師的年齡既是2的倍數也是5的倍數

  因數和倍數優秀教學設計 篇4

  教學內容:

  人教版小學數學第十冊教材12-13<<因數和倍數>>

  教學要求:

  1、 通過學生自學讓學生理解掌握因數和倍數的意義,明確因數和倍數是相互依存的。

  2 、通過學生合作學習,讓學生掌握找一個數的因數的方法。

  3、 培養學生的自學能力、觀察能力、抽象概括能力以及學生的合作探究能力。

  4 、培養學生的合作意識、探究意識、以及熱愛學習數學的情感。

  教學重點:

  理解因數和倍數的意義

  教學重點:

  掌握找一個數因數的方法

  教學過程:

  一 、創設情境,引入新課

  師:同學們,你們喜歡唱歌嗎?

  生:喜歡。

  師:今天老師特別想聽一首歌《世上只有媽媽好》,你們愿意唱給老師聽嗎?

  生:(可以)生唱。

  師:誰愿意介紹一下自己媽媽姓什么嗎?

  生:我媽媽姓馬。

  師:我們叫她馬阿姨可以嗎?

  生:可以。

  師:你能用馬阿姨和陳果說一句話嗎?

  生:馬阿姨是陳果的媽媽,陳果是馬阿姨的兒子。

  師:能不能單獨的說馬阿姨是媽媽,陳果是兒子?

  生:不能。因為他們不能分開,必須說誰是誰的媽媽,誰是誰的兒子。

  師:其實在數學中也有這樣的兩個數,它們是相互依存的,他們也是不能單獨存在的,那就是——《因數和倍數》,今天我們一起來學習。

  師:板書因數和倍數。請同學們齊讀課題。

  生:齊讀課題

  師:讀了課題你想知道什么?

  生1:想知道因數和倍數的意義。

  生2:怎樣找一個數的因數。

  生3:怎樣找一個數的倍數?

  師:這些問題是老師告訴你們,還是你們自己去學習?

  生:我們自己學習。

  【評析:用學生最熟悉的歌創設情境,既激發了學生的興趣,又拉近了師生之間的距離,創設了一個寬松、和諧的氛圍,以此從熟悉的母子或父子關系出發,讓學生理解了相互依存的關系,為理解倍數和因數的相互依存關系作鋪墊,體現了數學來源與生活!

  二、自學引導

  1 、請同學們帶著想知道的問題先自學教材12-13,然后完成學案一

  2 、檢測自學情況

  (一)填空

  (1) 3×4=12

  3是12的( ) 4也是12的( )

  12是3的( ) 12也是4的( )

  2×6=12

  2和6是12的( ) 12是2和6的( )

  1×12=12

  1和12是12的( ) 12是1和12的( )

  12的因數有:( )

 。2) a×b=c (a、b、c均為非零自然數)

  a是c的( ) b是c的.( )

  c是a的( ) c是b的( )

 。ǘ┡袛

  (1)因為0.8×5=4 所以0.8是4的因數。( )

 。2)因為3×6=18 所以18是倍數,3和6是因數。( )

 。3)因為24÷6=4所以24是6的倍數,4是24的因數。

 。ㄉ詫W并完成學案一,師指導)

  師:有誰愿意把你的學習作品展示大家。

  生:展示學習作品。

  師:看了張江楠的學習作品你想說點什么?(沒有學生舉手)你們沒有問題,那老師有問題請教你們了。

  師: 在 a×b=c 中, 為什么a、b、c均為非零自然數?

  生:為了方便,我們研究因數和倍數只是整數(不包括零)

  師:請同學齊讀這句話。

  生:齊讀

  師:因為0.8×5=4 所以0.8是4的因數。( )這句話對嗎?

  生:不對,因為0.8是小數不是整數。

  師:因為3×6=18 ,所以18是倍數,3和6是因數。( )這句話對嗎?

  生:不對,因為因數和倍數是相互依存的,是不能單獨存在的。

  師:因為24÷6=4所以24是6的倍數,4是24的因數。

  生:對

  師:請讀 a×b=c (a、b、c均為非零自然數)

  a是c的( 因數 ) b是c的( 因數 )

  c是a的(倍數 ) c是b的( 倍數 )

  生:齊讀。

  師:通過你們的自學初步理解因數和倍數的意義。你們會找一個數的因數嗎?

  生:會

  師:我們試試行嗎?

  生:行

  師:來個大的,還是小的。

  生:來個大的。

  師:30可以嗎?

  生:可以

  師:學號是30的因數的請起立,(不完整)看來找一或幾個不難,要找得既準確又完整,就需要方法了。你們有沒有信心自己去探究。

  生:有

  師:那好,你們4人小組合作找出30的因數,并完成學案二。

  【評析:把課堂留給學生,讓學生通過自學完成學案,體現了學在前,老師指導在后,充分讓學生獨立思考,獲取知識。這樣通過自學----完成學案---適時指導,讓學生真正成為學習的主人,理解因數和倍數的意義!

  三 、合作學習探究找一個數因數的方法

  1 、小組合作找出30的因數有哪些?(有乘法和除法兩種,用你們最喜歡的方法)。再組內討論以下三個問題

  ( )×( )=( )

 。 )×( )=( )

 。 )×( )=( )

 。 )×( )=( )

  30的因數有:( )

 。 )÷( )=( )

 。 )÷( )=( )

  ( )÷( )=( )

 。 )÷( )=( )

  30的因數有:( )

 。1)你們是怎樣找一個數的因數的?

 。2)你們找一個數的因數是怎樣才能做到既準確,又完整的?

 。3)你們找一個數的因數是找到什么時候為止?

  2、小組匯報

  生1:30的因數有(1 2 3 5 6 10 15 30)

  師:你是怎樣找一個數的因數的?

  生1:1×30=30找到1 30

  2×15=30找到2 15

  3×1030找到3 10

  5×6=30找到5 6

  生2::30÷1=30找到1 30

  30÷2=15找到2 15

  30÷3=10找到3 10

  30÷5=6找到5 6

  生5:從1開始去乘一個數等于30的兩個數就是30的因數。

  生6:用30除以1到它本身能整除的就是30的因數。

  生7:從1開始有序成對找到重復或接近為止

  3 、引導學生總結找一個數因數的方法

  從1開始用乘法或除法有序成對的找,找到重復或接近為止。

  【評析:找一個數的因數級發及發現歸納其特點,教師讓學生通過小組合作,相互評價,培養學生的合作意識,發揮學生的合作能力,歸納出找一個因數的方法,充分體現了學生是主體。】

  四、目標檢測

  1、 找36、28的因數

 。ú捎脦熒鷮诹罘椒ǎ瑥娬{重復寫一個)

  2、先找出下列各數的因數,再觀察這幾組數據你有什發現寫在括號里。

  8的因數有:( )

  11的因數有:( )

  15的因數有:( )

  24的因數有:( )

  你的發現是( )

  3你的學號是( )

  你學號的因數有( )

  學生完成后展示學習作品并匯報

  生1:我發現了每個數的因數都有1。

  生2::我發現了每個數的因數都有他本身。

  生6:我發現了一個數的因數最小是1,最大是它本身。

  生7:我發現了一個數的因數的個數是有限的,因為一個數的因數最小是1,最大是它本身

  生齊讀一個數的因數最小是1,最大是它本身。一個數的因數的個數是有限的。

  4、游戲:

  師:學號是25的因數的同學請起立。

  學號是48的因數的同學請起立。

  學號是18的因數的同學請起立。

  1號你為什么不坐下

  生:因為1是所有自然數的因數,坐下了還要起立。

  師:同學們想挑戰老師嗎(想)比老師叫起立的人多。

  生1:30的因數

  生2:學號有兩個因數的請起立。

  生3:學號有三個因數的請起立。

  生7:學號有因數1請起立。

  生8:學號因數最大是自己學號的請起立。

  【評析:找一個數的因數,歸納發現找因數的方法并不是難事,而對“一個數最大因數是它本身,最小因數是1”的理解有一定難度。教師在讓學生做練習的同時發現規律,同時通過游戲加深了對知識的理解,在游戲中體會數學的樂趣。實現了巧練、活練,真正把數學運用于生活!

  五、總結反思

  1、這節課你有什么收獲?

  2、如果還有不懂的小組內討論。

  【總評析:本節課總的可用六個字來概括,“引撥補、疑思用”師,即,教師:引——撥——補;學生:疑——思——用。學生通過自學,教師引導,產生疑問,在教師的指引下進行小組合作探究、分析、領悟,再加上教師的點撥,讓全體學生進行反思、掌握學法、建構數學模型,找一個數的因數的方法,讓學生從感性認識——理性認識——實踐運用——拓展提高,經歷了學習數學的過程,真正體會了學習數學的樂趣。本節課“雖已畢,但趣猶在”,留給我們回味的很多!

  板書設計:

  因數和倍數

  30的因數有:1 2 3 5 6 10 15 30

  有序 成對 準確 完整

  因數和倍數優秀教學設計 篇5

  教學目標:

  1、理解質數和合數的概念,并能判斷一個數是質數還是合數,會把自然數按約數的個數進行分類。

  2、培養學生自主探索、獨立思考、合作交流的能力。

  3、培養學生敢于探索科學之謎的精神,充分展示數學自身的魅力。

  教學重點:

  1、理解掌握質數、合數的概念。

  2、初步學會準確判斷一個數是質數還是合數。教學難點:區分奇數、質數、偶數、合數。

  教學過程:

  一、探究發現,總結概念:

  1、師:(出示三個同樣的小正方形)每個正方形的邊長為1,用這樣的三個正方形拼成一個長方形,你能拼出幾個不同的長方形?學生獨立思考,然后全班交流。

  2、師:這樣的四個小正方形能拼出幾個不同的長方形?學生各自獨立思考,想像后舉手回答。

  3、師:同學們再想一下,如果有12個這樣的小正方形,你能拼出幾個不同的長方形?師:我看到許多同學不用畫就已經知道了。(指名說一說)

  4、師:同學們,如果給出的正方形的個數越多,那拼出的不同的長方形的個數——,你覺得會怎么樣?

  學生幾乎是異口同聲地說:會越多。

  師:確定嗎?(引導學生展開討論。)

  5、師:同學們,用小正方形拼長方形,有時只能拼出一種,有時拼出的長方形不止一種。你覺得當小正方形的.個數是什么數的時候,只能拼一種?什么情況下拼得的長方形不止一種?并舉例說明。

  先讓學生小組討論,然后全班交流,師根據學生的回答板書。

  師:同學們,像上面這些數(板書的3、13、7、5、11等數),在數學上我們把它們叫做質數,下面的這些數(4、6、8、9、10、12、14、15等數)我們把它們叫做合數。那究竟什么樣的數叫質數,什么樣的數叫合數呢?學生獨立思考后,在小組內進行交流,然后再全班交流。

  引導學生總結質數和合數的概念,結合學生回答,教師板書:(略)

  6、讓學生舉例說說哪些數是質數,哪些數是合數,并說出理由。

  7、師:那你們認為“1”是什么數?讓學生獨立思考,后展開討論。

  二、動手操作,制質數表。

  1、師出示:73。讓學生思考著它是不是質數。

  師:要想馬上知道73是什么數還真不容易。如果有質數表可查就方便了。(同學們都說“是呀”。)師:這表從哪來呢? (教師出示百以內數表)這上面是1到100這100個數,它不是質數表,你們能不能想辦法找出100以內的質數,制成質數表?誰來說說自己的想法?(讓學生充分發表自己的想法。)

  2、讓學生動手制作質數表。

  3、集體交流方法。

  三、練習鞏固:完成練習四第

  1、2題。

  四、課題小結:

  這節課你在激烈的討論中有什么收獲?

  因數和倍數優秀教學設計 篇6

  教學目標:

  1、使學生結合具體情境初步理解因數和倍數的含義,初步理解因數和倍數的關系;

  2、使學生依據因數和倍數的含義以及已有乘、除法知識,通過嘗試、交流等活動,探索并掌握找一個數的因數和倍數的方法。

  3、滲透事物之間相互聯系、相互依存的辯證唯物主義的觀點,培養學生抽象、概括的能力。教學重點:理解因數和倍數的含義。

  教學難點:

  探索并掌握找一個數的因數和倍數的方法。

  教學準備:

  PPT課件。

  教學過程:

  一、導入新課(3分)

  師:同學們,你們知道嗎?人類最早對數學的研究就是從自然數開始的?此坪唵蔚淖匀粩,里面蘊藏著無窮的知識和奧秘。這節課我們就來研究有關自然數的一些知識。 (課件出示:12個小正方形)

  師:請同學們看大屏幕,這里有12個完全一樣的小正方形,大家可以把它們拼成一個長方形嗎?生:可以。

  師:怎樣拼成一個長方形呢?誰能用一個乘法算式把你的想法表達出來?

  生1:1×12=12生2:2×6=12生3:3×4=12 (板書:1×12=12 2×6=12 3×4=12)師:還有嗎?生:沒有了。

  師:我們先來看看第一個算式,(點擊課件)根據1×12=12,大家猜猜看,他每排擺幾個?擺了幾排?生:每排擺12個,擺一排。

  師:這是一種情況,還有別的可能嗎?生:每排擺1個,擺了12排。

  師:是這樣擺的嗎?(點擊課件出示擺法)師:根據2×6=12,你能猜出它的擺法嗎?

  生:每排擺6個,擺了2排。每排擺2個,擺了6排。師:像這樣嗎?(點擊課件出示擺法)

  師:我們來看最后一個乘法算式3×4=12,這個算式剛才是哪位同學說的?你能說說你的擺法嗎?

  師:每排擺4個,擺了3排。也有可能每排擺了3個,擺了4排。(邊說邊點擊課件出示)大家同意嗎?生:同意。

  師:同學們可別小看這三個乘法算式,它們不但可以清楚的表示出這幾種拼法,而且還蘊含著其他的數學知識呢。我們就以3×4=12這個算式為例,在數學里面,我們就說3是12的因數,4也是12的因數,反過來說12是3的倍數,12也是4的倍數。今天這節課我們就來研究因數和倍數。(板書課題:因數和倍數)

  二、加強概念的理解。(5分)

  師:還有兩個乘法算式呢,大家知道誰是誰的因數,誰是誰的倍數嗎?生:知道。

  師:同桌兩人相互說說吧。開始師:誰來說第一個算式?(點擊課件)

  生:1是12的因數,12是12的因數。12是1的倍數,12是12的倍數。師:同意嗎?

  生:同意。(點擊課件出示)師:2×6=12這道算式誰來說一說?

  生:2是12的因數,6是12的因數。12是2的倍數,12是6的倍數。師:說得真好,剛才兩位同學表述得非常完整。因數和倍數就像一對好朋友,我們在說的時候一定要說清誰是誰的因數,誰是誰的倍數,缺一不可。(課件出示)

  師:通過這三道乘法算式我們找出了12的因數,12的因數有哪些呢?一起來說一說。引導學生一組一組的說。師:12還有其它的因數嗎?生:沒有了。師:為了方便,我們在研究因數和倍數時所說的數指的是整數(一般不包括0)(課件出示)

  三、探索尋找因數的方法。(10分)

  師:這里還有5個數,大家看看哪兩個數之間存在因數與倍數的關系?誰來說一說?

  (課件出示2,3,5,18,25)生自由發言。

  師:我剛才聽到好幾個數都是18的因數。哪位同學能在這5個數中找出18的因數到底有哪幾個?生1:2,3生2:18 ……

  師:看來我們要找出18的一個或兩個因數很容易,(在所有的整數中,18還有其它的因數嗎?)怎樣才能把18的所有因數都找出來呢?有沒有什么好的方法?四人一小組討論討論,討論完后把方法寫出來。學生討論,教師巡視指導。

  師:哪一組來說說你采用的是什么方法?生1:1×18=18 2×9=18 3×6=18生2:18÷1=18

  18÷2=9

  18÷3=6 ……

  (展示三個小組的做法)師:大家琢磨琢磨這幾種看似不同的方法有相同的地方嗎? (引導學生發現其實都是運用了乘法口訣,通過一個算式能找出兩個因數,也可以說是一對因數)

  師:很有道理。我們一起來看看18的因數是怎樣一對一對找出來的。首先由1×18=18,我們可以找到…生:1和18生:由2×9=18,我們可以找到2和9,由3×6=18,我們可以找到3和6。

  板書:6

  師:找完了嗎?生:找完了。

  師:我們把18的因數按照從小到大的順序完整的說一遍。 (學生齊說,老師用手勢引導)下面我們把它寫下來。

  (師板書:18的因數有1,2,3,6,9,18)

  師:18的因數還可以像這樣表示(點擊課件出示集合圖)

  師:我們剛才找出了18的所有因數,大家認為要想把一個數的因數找完整應該注意些什么?生:要按照一定的順序。師:你說得真好。還有需要注意的嗎?生:要一對一對的找。

  師:這兩位同學總結的方法很不錯,大家聽清楚了嗎?誰能完整的說一說?

  生1:有序的、一對一對的找。師:你來說一說。

  生2:有序的、一對一對的找。

  師:對,按照大家說的這種方法我們就能很快的把一個數的所有因數找出來。那找到什么時候為止呢?請大家看18的最后一對因數是幾和幾?生:3和6。

  師:為什么不接著往下寫了?生答。

  小結:其實找因數就像我們數學中的相遇問題。最開始是1和18,離得很遠,接著是2和9,有點近了,再接下來是3和6,更近了。3和6之間的整數只有4和5,都不是18的因數,所以沒必要再往下找。

  嘗試練習:

  師:請大家按照這種有序的一對一對的找的方法試著找一找30和36的所有因數。在作業本上寫一寫。

  師:哪位同學來說說30的因數你是怎么找的? (投影展示)學生說說自己的想法。

  師:大家同意他的想法嗎?和他一樣的請舉手。

  師:既然大家都用了這種方法,那么老師有一個問題想請教同學們,30的最后一組因數是5和6,找到這兒的時候還需要繼續找嗎?為什么?

  生:因為5和6已經挨著了,它們之間已經沒有整數了。

  師:說得真好,我們按照一定的`順序,一對一對地找出了30所有的因數。36的因數誰來說一說。生匯報,課件演示。

  (出示到6和6時,還找嗎?)生:不找了。師:因為…

  生:因為6和6已經重合了,它們之間更不可能有其它的整數。師:最后一組出現了兩個相同的因數,怎么辦?生:我們就可以只寫一個。 (演示:去掉第二個)

  師:36的因數有哪些?請大家有順序的說一說。 (生說,課件演示)

  四、觀察發現因數的特點。(3分)

  師:找一個數的因數大家會了嗎?生:會了。師:下面老師口述兩個數,看看哪個同學能夠很快地說出它的所有因數。我們來比一比。師:1的因數有…生:1師:還有嗎?生:沒有。師:7的因數呢?生:1、7。

  師:找一個數的因數的方法大家掌握得非常好,我們一起來看看所找的這些數的因數,它們有什么共同點?(課件出示)生:所有的數的因數都有1。

  (課件出示)一個數最小的因數是( 1 ),師:一個數的最大因數是什么?生:它本身。

  (課件出示:一個數的最大因數是它本身)

  師:既然一個數有最大的因數,那么一個數的因數個數是()。

  五、找一個數的倍數。(10分)

  師:我們學會了找一個數的因數,那么找一個數的倍數大家會嗎?試一個怎么樣?生:好。

  (課件出示:你能找出多少個2的倍數)

  師:同桌相互說著聽一聽。(師板書:2的倍數有)師:誰來說一說?

  生:2,4,6,8,10……(生邊說師邊板書)師:寫得完嗎?生:寫不完。師:那怎么辦?

  (引導學生用省略號表示)

  一個數的倍數同樣可以用集合圖表示(點擊課件,出示集合圖)師:2的倍數我們是找出來了,誰能告訴我,你是用什么方法找得嗎?生:2×1=2 2×2=4 2×3=6 2×4=8 2×5=10…

  師:找2的倍數我們可以2來分別乘1、2、3、4、5…所得的積就是它的倍數了。找其它數的倍數我們能用這種方法嗎?生:能。

  師:請大家試著在這條數軸上找出3的倍數。一起說一說。 (課件演示)師:說得完嗎?生:說不完。

  師:這還有兩個數5和7,哪位同學能夠很快的說出它們的倍數。(課件出示)

  學生匯報。(課件出示)

  師:通過上面的例子,你發現一個數的倍數有什么特點嗎?生1:一個數的最小倍數是它本身。生2:一個數的倍數個數是無限的。 (課件跟隨出示:一個數的最小倍數是它本身。一個數的倍數個數是無限的)

  師:今天的新知識即將告一段落,下面的一些題大家看看會做嗎?

  六、練一練:(3分)

  1、投影出示填空題。

  ① 24的最大因數是(),最小倍數是()

 、谥挥幸粋因數的數是()

 、 15的因數有()。

  ④ 6的倍數有()(寫出5個)

  ⑤一個數的因數個數是(),一個數的倍數個數是()。

  師:大家說得真棒,我們來看看這幾位同學說的對嗎?

  2、誰說得對?(投影出示)

  師:看來憑這幾道題要想難倒同學們,還真不容易,不過我還真不想放棄,這還有兩道題,大家愿意接受挑戰嗎?猜一猜(1分)考考你

  師;看來我不想放棄都不行了,同學們太聰明了。

  七、 小結。(2分)

  師:聰明的同學們,誰能說說通過這節課的學習你有什么收獲?

  八、拓展(3分)

  師:既然我們學會了找一個數的因數,那就請同學們把自己編號的所有因數寫下來。

  生開始寫。

  師:編號是6的同學請站起來,你真幸運,知道為什么嗎?我們一起來看看6的因數。

  課件出示。

  師:我們如果把最大因數它的本身去掉,從剩下的三個因數中你會發現什么?

  生:1+2+3=6

  師:這剩下的因數和剛好等于6,也就是說剛好等于這個數的本身。這樣的數我們把它叫做完全數,也叫完美數。我們全班同學的編號中大家知道有幾個完美數嗎?

  生:……

  師:只有兩個。在1到40000000之間只有5個完美數。最早研究完美數的是生活在2500年前的古希臘數學家畢達哥拉斯,到2004年,人們在無窮無盡的自然數里,一共找出了40個完美數。我們一起來看看前6個完美數。當然,人們至今仍然沒有停止尋找完美數的步伐。同學們,知識是無窮無盡的,在知識的海洋里我們也應該有科學家的這種孜孜不倦,認真執著的精神。

  因數和倍數優秀教學設計 篇7

  教學內容:

  青島版教材小學數學五年級上冊88—91頁。

  教學目標:

  1、使學生初步認識因數和倍數的含義,探索求一個數的因數或倍數的方法,發現一個數的因數、倍數中最大的數、最小的數及其個數方面的特征。

  2、使學生在認識因數和倍數以及探索一個數的因數或倍數的過程中,進一步體會數學知識之間的內在聯系,提高數學思考的水平,對數學產生好奇心,培養學習興趣。

  教學重點:

  理解因數和倍數的意義,探索求一個數因數或倍數的方法。

  教學難點:

  探索求一個數因數或倍數的方法。

  教具準備:

  多媒體課件、學生練習題

  教學過程:

  一、談話導入。

  師:同學們看這是什么?

  生:小正方形。

  師:想不想知道王老師給大家帶來了多少個這樣的小正方形?

  生:想。

  師:多少個?

  生:12個。

  師:想一想你能不能把這12個完全一樣的小正方形拼成一個長方形呢?

  生:能。

  【設計意圖】:以學生熟悉情景引入,激發學生的好奇心。

  二、教學因數和倍數的意義

  師:增加一點難度,用一道算式說明你的想法,讓其他同學猜一猜你是怎么擺的,好嗎?

  生:好!

  學生匯報:

  生1:1×12=12

  師:他是怎么擺的?

  生:一行擺1個,擺了12行;也可以一行擺12個,擺1行。

  課件出示擺法。

  師:把第一種擺法豎起來就和第二種擺法一樣了,我們把這兩種擺法算作一種擺法。(用課件舍去一種)

  生2:2×6=12

  師:猜一猜他是在怎么擺的?

  生:一行擺2個,擺了6行;也可以一行擺6個,擺2行。

  師:這兩種情況,我們也算一種。

  生3: 3×4=12

  師:他又是怎么擺的?

  生:一行擺3個,擺了4行;也可以一行擺4個,擺3行。

  師:還有其他擺法嗎?

  生:沒有了。

  師:對,如果把12個同樣大小的正方形拼成一個長方形,就只有這三種擺法,大家千萬不要小看了這三種擺法,更不要小看了這三種擺法下面的三道乘法算式,今天我們的新課就藏在這三道乘法算式里面。因數和倍數(板書課題)

  2.教學“因數和倍數”的意義。

  師:我們以3×4=12為例,在數學上可以說3是12的.因數,4也是12的因數,12是3的倍數,12也是4 的倍數。這里還有兩道算式,同桌兩個同學先互相說一說誰是誰的因數,誰是誰的倍數。

  學生匯報:任選一道回答。

  生1:12是12的因數,1是12的因數,12是2的倍數,12是1的倍數。

  師:說的多好!雖然有點像繞口令,但數學上確實是這樣的。我們再一起說一遍。

  師:還有一道算式,誰來說一說?

  生:2是12的因數,6是12的因數,12是2的倍數,12也是6的倍數。

  師明確:為了研究方便,我們所說的因數和倍數都是指自然數,(0除外)。

  師:通過剛才的練習,你有沒有發現12的因數一共有哪些? (生邊說老師邊有序的用課件出示12的所有的因數。)

  師:好了,剛才我們已經初步研究了因數和倍數,屏幕顯示:試一試:你能從中選兩個數,說一說誰是誰的因數?誰是誰因數和倍數?行不行?先自己試一試。

  3、5、18、20、36

  【設計意圖】讓學生經歷知識的形成過程。通過實際例子,讓學生進一步理解,因數和倍數之間存在著相互依存的關系。

  三、教學尋找因數的方法。

  1、找一個數的因數。

  師:看來同學們對于因數和倍數已經掌握的不錯了。不過剛才老師在聽的時候發現一個奧秘,好幾個數都是36的因數,你發現了嗎?誰能在五個數中把哪些數是36的因數一口氣說完?

  師:說出幾個36的因數并不難,關鍵是怎樣找的既有序又全面,有沒有信心挑戰一下?

  生:有。

  師:老師提個要求:

  1)可以獨立完成,也可以同桌交流。

  2)把這個數的因數找全以后,把你的方法記錄在下面。并總結你是怎樣找的。

  2、探索交流找一個數的因數的方法。

  找一名有代表性的作業板書在黑板上。

  師:他找對了嗎?

  生:沒有,漏下了一對。

  師:為什么會漏掉?僅僅是因為粗心嗎?

  生:不是,他沒有按照一定的順序找!

  師:那么要找到36所有的因數關鍵是什么?

  生:有序。

  師生共同邊說邊有序的把36的所有的因數板書出來。 師:還有問題嗎?

  生:沒有了。

  生:你們沒有,老師有一個問題,你們為什么找到6就不再接著往下找了?

  生:再接著找就重復了。

  師:那么找到什么時候就不找了?

  生:找到重復了,就不在往下找了。

  師、生共同總結找因數的方法。(一對一對有序的找,一直找到重復為止)。

  師:有失誤的學生對自己的錯誤進行調整。

  3、鞏固練習。

  找出下面各數的因數。

  4、尋找一個數的因數的特點。

  【設計意圖】放手讓學生自主找一個數的因數,并總結找一個數因數的方法。學生非常喜歡,而且也能夠讓學生在活動中提升。

  四、教學尋找倍數的方法。

  1、找一個數的倍數。

  師:剛才我們學習了找一個數的因數,那么你能像剛才一樣有序的找出一個數的所有倍數嗎?

  生:能!

  師:試試看,找個小的可以嗎?

  生:行!

  師:找一下3的倍數。30秒時間,把答案寫在練習紙上。 ??

  師:有什么問題嗎?

  生:老師,寫不完。

  師:為什么寫不完?

  生:有很多個!

  師:那怎么才能全都表示出來呢?

  生:可以加省略號。

  師:你太厲害了!你把語文上的知識都用上了,太真聰明了!難道不該再來點掌聲嗎?

  師:誰能總結一下你是怎樣找到的?

  生:從小到大依次乘自然數。

  師:你真會思考!

  課件出示3的倍數。

  2、找5、7的倍數。

  師:我們再來練習找一下5的倍數。

  生:5的倍數有:5、10、15、20、25??

  生:7的倍數有:7、14、21、28、35??

  師:你能像總結一個數因數的特點一樣,來總結一下一個數的倍數有什么特征嗎?

  生:能!

  學生總結:一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。

  【設計意圖】在探索求一個數的倍數和因數的方法時,創設具體的情境讓學生去合作交流,并結合具體事例,讓學生自己觀察并發現一個數的倍數、因數中最大的數、最小的數及其個數方面的特征,豐富了教學方式,讓學生在觀察中發現,在合作中體驗成功的喜悅,在主動參與、樂于探究中發展自我。

  四、知識拓展

  認識“完美數”。

  師:(課件出示6的因數)在6的因數中還藏著另外一個秘密,(這是孩子們都瞪大眼睛在看,在聽!)我們把6的因數中最大的一個去掉,剩下1、2、3,然后把它們再加起來又回到6本身,數學家給這樣的數起了一個名字,叫“完美數”。依次出示第二個、第三個一直到第六個完美數。

  小結:其實有關因數和倍數的秘密還有很多,它們在等待著同學們在以后的學習中去研究、去探索。

  【設計意圖】豐富學生的知識,陶冶學生的情操。

  教學反思:

  找一個數因數的方法是本節課的難點,如何做到既不重復又不遺漏地找36的因數,對于剛剛對倍數因數有個感性認識的學生來說有一定困難,這里充分發揮小組學習的優勢。先讓學生自己獨立找36的因數,我巡視了一下三分之一的學生能有序的思考,多數學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數,如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這時如果再給予有效的指導和總結就更好了。

  因數和倍數優秀教學設計 篇8

  教學內容:

  教材例1、例2

  教學目標

  1.知識與技能:讓學生初步理解因數和倍數的概念,掌握找因數和倍數的方法。學會用列舉法找一個數的因數和倍數。

  2.過程與方法:借助直觀圖,先引導學生觀察后列出乘法算式,最后結合乘法算式來理解因數與倍數的概念。

  3.情感、態度與價值觀:理解因數和倍數的意義能及兩者之間相互依存的關系。

  教學重點:

  理解因數和倍數的概念。

  教學難點:

  掌握求一個數的因數和倍數的方法。

  教學方法:

  啟發式教學法、指導自主學習法。

  教學準備:

  多媒體。

  教學過程:

  一、新課導入:

  1、出示教材第5頁例1。

  12÷2=6 9÷5=1.830÷6=5 2÷3=0.6

  26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7

  (1)觀察: 引導觀察例1中的算式,你發現了什么?(都是除法算式)

  (2)分類:你能把上面的除法算式分類嗎?

  學生分類后,教師組織學生交流,引導學生根據是否整除分為以下兩類

  第一類 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二類 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25

  2、引入課題。這節課我們就來學習有關數的整除的相關知識。(板書課題:因數和倍數)

  二、探索新知:

 。ㄒ唬┟鞔_因數與倍數的意義。(教學例1)

  1. 教師引導。教師指出:在整數除法中,如果商是整數而沒有余數,我們

  就說被除數是除數和商的倍數,除數和商是被除數的因數。例如:12÷2=6,我們說12是2和6的倍數,2和6是12的因數。

  2. 學生嘗試。

  教師讓學生說一說第一類的每個算式中,誰是誰的因數?誰是誰的倍數?先同桌互相說一說,再組織全班交流。

  3. 深化認識。師:通過剛才的說一說活動,你發現了什么?

  引導學生體會:因數和倍數雖是兩個不同的概念,但又是相互依存的,二者不能單獨存在。我們不能說誰是因數,誰是倍數,而應該說誰是誰的因數,誰是誰的倍數。例如,30÷6=5,30是6和5的倍數,6和5是30的因數。教師強調,并讓學生注意:為了方便,在研究因數和倍數的時候,我們所說的數指的是自然數(一般不包括O)。

  4. 即時練習。指導學生完成教材第5頁“做一做”。

  小結:如果a÷b =c(a,b,c均是不為0的自然數),那么a就是b和c的倍數,b和c是a的因數。因數和倍數是相互依存的'。

  (二)探索找一個數因數的方法。(教學例2)

  1. 出示例2:18的因數有哪幾個?

  (1) 學生獨立思考。

  師:根據因數和倍數的意義,想一想18除以哪些整數的結果是整數。

  18÷1=18,l和18是18的因數;18÷2=9, 2和9是18的因數;18÷3=6, 3和6是18的因數。引導學生把18的因數按從小到大的順序排列,每兩個因數之間用逗號隔開,全部寫完后用句號結束,即18的因數有:1,2,3,6,9 ,18。

  (2)小組合作交流。交流時教師要讓學生說明找的方法,引導學生認識:只要想18除以哪些整數的結果是整數,并且要從1開始,一對一對地找,避免遺漏。如果學生還有其他想法,只要合理,教師都應給予肯定。

  (3)采用集合圖的方法。

  教師指出也可用右面的集合圖來表示18的全部因數。明確:用圖示法表示18的因數時,先畫一個橢圓,在橢圓的上面寫上“18的因數”,再把18的因數按從小到大的順序有規律地寫在橢圓里,每兩個因數之間也用逗號隔開,全部寫完后不加句號。

  (4)練習。讓學生找出30的因數和36的因數,并組織交流。

  30的因數有1,2,3,5,6,10,15,30。

  36的因數有1,2,3,4,6,9,12,18,36。

  三、鞏固練習

  指導學生完成教材“練習二”第1、6題。學生獨立完成全部練習后教師組織學生進行集體證正。

  四、課堂小結

  師:通過本節課的學習,你有什么收獲?

  板書設計:

  因數和倍數

  12÷2=6 12是2和6的倍數

  2和6是12的因數 18的因數有1,2,3,6,9,18。

  一個數的因數的個數是有限的,一個數的倍數的個數是無限的。

  作業:教材第7頁“練習二”第2(1)題。

  因數和倍數優秀教學設計 篇9

  第二課時:因數與倍數(2)

  教學內容:

  教材P6例3及練習二第2(1)3~8題。

  教學目標:

  知識與技能:通過學習,使學生能自主探究,找出求一個數的倍數的方法。 過程與方法:結合具體情境,使學生進一步認識自然數之間存在因數和倍數的關系,掌握求一個數的因數和倍數的方法。

  情感、態度與價值觀:初步學會從數學的角度提出問題、理解問題,并能用所學知識解決問題。在解決問題的過程中,培養學生概括、分析和比較的能力,使學生體會數學知識的內在聯系。

  教學重點:

  掌握求一個數的倍數的方法。

  教學難點:

  理解因數和倍數兩者之間的關系。

  教學方法:

  啟發式教學法、指導自主學習法。

  教學準備:

  多媒體。

  教學過程:

  一、復習導入

  10,28,42的因數有哪些?你是用什么方法找出這些數的因數個數的?一個數的因數中,最大的是幾?最小的是幾?

  二、探索新

  1、探索找倍數的方法。(教學例3)

  出示例3:2的倍數有哪些?

  師:你會找2的倍數嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準備好了嗎?開始!

  師:時間到,你寫了多少個2的倍數?生1:15個。生2:24個。

  師:大家都是用的什么方法呢?

  生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。

  生2:我也是用乘法,用2去乘1、乘2……

  師:哪些同學也是用乘法做的?

  師:你們都是用2去乘一個數,所得的積就是2的倍數。還有不同的方法嗎?

  生3:我用的.是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。

  師:很好!如果給你更長的時間,你能把2的倍數全部寫出來嗎?

  師:為什么?(因為2的倍數有無數個)

  師:怎么辦?(用省略號)

  師:通過交流,你有什么發現?

  引導學生初步體會2的倍數的個數是無限的。

  追問:你能用集合圖表示2的倍數嗎?

  學生填完后,教師組織學生進行核對。

  (4)即時練習。讓學生找出3的倍數和5的倍數,并組織交流。學生舉例時可能會產生錯誤,教師要引導學生根據錯例進行適時剖析。

  4、反思提煉。師:從前面找因數和倍數的過程中,你有什么發現?

  先讓學生在小組內交流,再組織全班集體交流,通過全班交流,引導學生認識以下三點:

  (1)一個數的最小因數是1,最大因數是它本身。

  (2)一個數的最小倍數是它本身,沒有最大倍數。

  (3)一個數的因數的個數是有限的,一個數的倍數的個數是無限的。

  三、鞏固提升

  1、指導學生完成教材第7~8頁“練習二”第4、5、6、7題。

  學生獨立完成全部練習后教師組織學生進行集體證正。

  集體訂正時,教師著重引導學生認識以下幾點:

  (1)第4題“15的因數有哪些?”和“15是哪些數的倍數”答案是一樣的。

  (2)第5題中的第(2)小題是錯的,因為一個數的倍數的個數是無限的,第(4)小題也是錯的,因為在研究因數和倍數時,我們所說的數指的是自然數,不含小數。

  (3)思考題:兩數如果都是7(或9)倍數,它們的和也一定是7(或9)的倍數,即如果兩數都是n的倍數,它的和也是n的倍數。

  2、利用求倍數的方法解決生活中的實際問題

  出示:媽媽買來幾個西瓜,2個2個地數,正好數完,5個5個地數,也正好數完。這些西瓜最少有多少個?

  理解題意,分析解答。

  教師提示“2個2個地數,正好數完,說明西瓜的個數是2的倍數,5個5

  因數和倍數優秀教學設計 篇10

  教學內容:

  因數與倍數(P12-13例1及P15題1、2)

  教學目標:

  1、從操作活動中理解因數的意義,會判斷一個數是不是另一個數的因數。

  2、培養學生抽象、概括與觀察思考的能力,滲透事物之間相互聯系,相互依存的辨證唯物主義觀點。

  3、培養學生的合作意識、探索意識以及熱愛數學學習的情感。

  教學重點:

  理解因數的意義

  教學難點:

  能熟練地找一個數的因數。

  教具準備:

  多媒體課件

  教學過程:

  一、引入新課:

  1、課件出示主題圖,讓學生各列一道乘法算式。

  2、師:看你能不能讀懂下面的算式?

  出示:因為2×6=12

  所以2是12的因數,6也是12的因數;

  12是2的.倍數,12也是6的倍數。

  3、師:你能不能用同樣的方法說說另一道算式?你還能找出12的其他因數嗎?

 。ㄖ该f一說)

  4、你能不能寫一個算式來考考同桌?學生寫算式。

  5、師:今天我們就來學習因數和倍數。(板書課題:因數和倍數)

  齊讀教材第12的注意。

  二、自學預設:

  1、仔細看例一,什么叫因數和倍數?像這樣的乘除法算式中的三個數之間還有另一種說法,你想知道嗎?

  2、怎樣找因數?例如18,36的因數是什么?

  3、因數有什么特點?一個數的最小因數是多少?有幾個因數?(舉例說明)

  嘗試練習

  試著完成P13的做一做練習

  三、認識因數與倍數,展示交流

 。ㄒ唬┱乙驍担

  1、出示例1:18的因數有哪幾個?

  師:從12的因數可以看出:一個數的因數還不止一個,那我們一起找找看18的因數有哪些?

  學生嘗試完成匯報:(18的因數有: 1,2,3,6,9,18)

  2、用這樣的方法,請你再找一找36的因數有那些?

  匯報36的因數有: 1,2,3,4,6,9,12,18,36

  師:你是怎么找的?

  舉錯例(1,2,3,4,6,6,9,12,18,36)

  師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)

  3、你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在練本上寫一寫,然后匯報。

  4、其實寫一個數的因數除了這樣寫以外,還可以用集合表示。課件出示

  5、小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?

  從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

  (二)我的質疑

  1、誰能舉一個算式例子,并說說誰是誰的因數?

  2、討論:0×3 0×10 0÷3 0÷10

  提問:通過剛才的計算,你有什么發現?

  3、注意:

 。1)為了方便,在研究因數和倍數的時候,我們所說的數一般指的是整數,但不包括0。

 。2)這節課我們研究因數與倍數的關系中所說的因數不是以前乘法算式名稱的“因數”,兩者不能搞混淆。

  四、反饋檢測

  1、下面每一組數中,誰是誰得因數?

  16和2 4和24 72和8 20和5

  2、下面得說法對嗎?說出理由。

 。1)48是6的倍數

 。2)在13÷4=3……1中,13是4的倍數

  (3)因為3×6=18,所以18是倍數,3和6是因數。

  3、完成P15第2題

  學生自己獨立完成,講評時讓學生說一說,是怎么想的?

  五、課堂小結:

  我們一起來回憶一下,這節課我們重點研究了一個什么問題?你有什么收獲呢?

  板書設計: 因數和倍數

  18的因數有: 1,2,3,6,9,18

  一個數的因數::最小的是1,最大的是它本身。

【因數和倍數優秀教學設計】相關文章:

《倍數和因數》教學設計04-20

因數和倍數教學設計及反思09-27

五年級下冊《因數和倍數》教學設計11-22

《找因數》教學設計08-03

《最小公倍數》教學設計06-02

《獅子和鹿》優秀教學設計優秀02-13

《獅子和鹿》教學設計優秀02-15

《長城和運河》教學設計優秀06-06

《平移和旋轉》教學設計優秀04-22

主站蜘蛛池模板: 宣武区| 赤峰市| 德兴市| 敦煌市| 苗栗市| 白山市| 建瓯市| 石河子市| 安庆市| 淮滨县| 吕梁市| 宁海县| 乳山市| 闽侯县| 泉州市| 阜阳市| 集贤县| 五大连池市| 西藏| 古浪县| 元阳县| 赫章县| 河池市| 长岛县| 鹤岗市| 从江县| 台前县| 杭锦旗| 江北区| 清远市| 蚌埠市| 苗栗市| 上栗县| 且末县| 剑川县| 彰化县| 游戏| 剑阁县| 汉寿县| 扎鲁特旗| 吉木乃县|