两个人做人爱视频免费,97久久精品人人搡人妻人人玩,欧洲精品码一区二区三区,999zyz玖玖资源站永久

我要投稿 投訴建議

中考數學知識點總結

時間:2024-05-24 15:32:55 中考 我要投稿

中考數學知識點總結(通用15篇)

  總結是在某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而得出教訓和一些規律性認識的一種書面材料,寫總結有利于我們學習和工作能力的提高,因此十分有必須要寫一份總結哦。那么我們該怎么去寫總結呢?下面是小編為大家收集的中考數學知識點總結,僅供參考,希望能夠幫助到大家。

中考數學知識點總結(通用15篇)

中考數學知識點總結1

  一、目標與要求

  1.了解一元二次方程及有關概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,應用一元二次方程概念解決一些簡單題目。

  2.掌握通過配方法、公式法、因式分解法降次──解一元二次方程,掌握依據實際問題建立一元二次方程的數學模型的方法,應用熟練掌握以上知識解決問題。

  二、重點

  1.一元二次方程及其它有關的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題。

  2.判定一個數是否是方程的根;

  3.用配方法、公式法、因式分解法降次──解一元二次方程。

  4.運用開平方法解形如(x+m)2=n(n≥0)的方程,領會降次──轉化的數學思想。

  5.利用實際問題建立一元二次方程的數學模型,并解決這個問題.

  三、難點

  1.一元二次方程配方法解題。

  2.通過提出問題,建立一元二次方程的數學模型,再由一元一次方程的概念遷移到一元二次方程的概念。

  3.用公式法解一元二次方程時的討論。

  4.通過根據平方根的意義解形如x2=n,知識遷移到根據平方根的意義解形如(x+m)2=n(n≥0)的方程。

  5.建立一元二次方程實際問題的數學模型,方程解與實際問題解的區別。

  6.由實際問題列出的'一元二次方程解出根后還要考慮這些根是否確定是實際問題的根。

  7.知識框架

  四、知識點、概念總結

  1.一元二次方程:方程兩邊都是整式,只含有一個未知數(一元),并且未知數的最高次數是2(二次)的方程,叫做一元二次方程。

  2.一元二次方程有四個特點:

  (1)含有一個未知數;

  (2)且未知數次數最高次數是2;

  (3)是整式方程。要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理。如果能整理為 ax2+bx+c=0(a≠0)的形式,則這個方程就為一元二次方程。

  (4)將方程化為一般形式:ax2+bx+c=0時,應滿足(a≠0)

  3. 一元二次方程的一般形式:一般地,任何一個關于x的一元二次方程,經過整理,都能化成如下形式ax2+bx+c=0(a≠0)。

  一個一元二次方程經過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數;bx是一次項,b是一次項系數;c是常數項。

中考數學知識點總結2

  圓的定理:

  1不在同一直線上的三點確定一個圓。

  2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3圓是以圓心為對稱中心的中心對稱圖形

  4圓是定點的距離等于定長的點的集合

  5圓的內部可以看作是圓心的距離小于半徑的點的集合

  6圓的外部可以看作是圓心的距離大于半徑的點的集合

  7同圓或等圓的半徑相等

  8到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  中考數學知識點復習口訣

  有理數的加法運算

  同號相加一邊倒;異號相加“大”減“小”,

  符號跟著大的跑;絕對值相等“零”正好。

  合并同類項

  合并同類項,法則不能忘,只求系數和,字母、指數不變樣。

  去、添括號法則

  去括號、添括號,關鍵看符號,

  括號前面是正號,去、添括號不變號,

  括號前面是負號,去、添括號都變號。

  一元一次方程

  已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。

  平方差公式

  平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

  完全平方公式

  完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;

  首±尾括號帶平方,尾項符號隨中央。

  因式分解

  一提(公因式)二套(公式)三分組,細看幾項不離譜,

  兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,

  四項仔細看清楚,若有三個平方數(項),

  就用一三來分組,否則二二去分組,

  五項、六項更多項,二三、三三試分組,

  以上若都行不通,拆項、添項看清楚。

  單項式運算

  加、減、乘、除、乘(開)方,三級運算分得清,

  系數進行同級(運)算,指數運算降級(進)行。

  一元一次不等式解題步驟

  去分母、去括號,移項時候要變號,同類項合并好,再把系數來除掉,

  兩邊除(以)負數時,不等號改向別忘了。

  一元一次不等式組的解集

  大大取較大,小小取較小,小大、大小取中間,大小、小大無處找。

  一元二次不等式、一元一次絕對值不等式的解集

  大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。

  分式混合運算法則

  分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);

  乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;

  加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;

  變號必須兩處,結果要求最簡。

  中考數學知識點歸納:平面直角坐標系

  平面直角坐標系

  1、平面直角坐標系

  在平面內畫兩條互相垂直且有公共原點的'數軸,就組成了平面直角坐標系。

  其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。

  為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。

  注意:x軸和y軸上的點,不屬于任何象限。

  2、點的坐標的概念

  點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。

中考數學知識點總結3

  1. 因式分把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.

  3.公因式的確定:系數的最大公約數?相同因式的最低次冪.

  注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

  4.因式分解的公式:

  (1)平方差公式: a2-b2=(a+ b)(a- b);

  (2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

  5.因式分解的注意事項:

  (1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;

  (2)使用因式分解公式時要特別注意公式中的字母都具有整體性;

  (3)因式分解的.最后結果要求分解到每一個因式都不能分解為止;

  (4)因式分解的最后結果要求每一個因式的首項符號為正;

  (5)因式分解的最后結果要求加以整理;

  (6)因式分解的最后結果要求相同因式寫成乘方的形式.

  6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數系數;(9)展開部分括號或全部括號;(10)拆項或補項.

  7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.

中考數學知識點總結4

  1、變量與常量

  在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。

  一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數。

  2、函數解析式

  用來表示函數關系的數學式子叫做函數解析式或函數關系式。

  使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數的三種表示法及其優缺點

  (1)解析法

  兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數關系的'方法叫做圖像法。

  4、由函數解析式畫其圖像的一般步驟

  (1)列表:列表給出自變量與函數的一些對應值。

  (2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點。

  (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

中考數學知識點總結5

  有理數:

  (1)凡能寫成形式的數,都是有理數,整數和分數統稱有理數.

  注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;

  (2)有理數的分類:①②

  (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的.數分成四個區域,這四個區域的數也有自己的特性;

  (4)自然數0和正整數;a>0a是正數;a<0a是負數;

  a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數.

中考數學知識點總結6

  第十一章:全等三角形復習

  一全等三角形

  1、什么是全等三角形?一個三角形經過哪些變化可以得到它的全等形?能夠完全重合的兩個三角形叫做全等三角形。一個三角形經過平移、翻折、旋轉可以得到它的全等形。

  2、全等三角形有哪些性質?

  (1):全等三角形的對應邊相等、對應角相等。

  (2):全等三角形的周長相等、面積相等。

  (3):全等三角形的對應邊上的對應中線、角平分線、高線分別相等。

  3、一般三角形全等的條件(包括直角三角形):(1)定義(重合)法;

  (2)SSS:三邊對應相等的兩個三角形全等;

  (3)SAS:兩邊和它們的夾角對應相等兩個三角形全等;

  (4)ASA:兩角和它們的夾邊對應相等的兩個三角形全等;

  (5)AAS:兩角和其中一角的對邊對應相等的兩個三角形全等。解題常用后面四種方法。直角三角形全等特有的條件:HL(斜邊和一條直角邊對應相等的兩個直角三角形全等)。

  4、證明兩個三角形全等的基本思路:

  (1)已知兩邊:a、找第三邊(SSS);b、找夾角(SAS);c、找是否有直角(HL)。

  (2)已知一邊一角:①已知一邊和他的鄰角:a、找這邊的另一個鄰角(ASA);b、找這個角的另一個邊(SAS);c、找這邊的對角(AAS)。

  ②已知兩角:a、找兩角的夾邊(ASA);b、找夾邊外的任意邊(AAS)。

  二角平分線

  1、角平分線的性質:角的平分線上的點到角的兩邊的距離相等。

  2、角平分線的判定:角的內部到角的兩邊的距離相等的點在角的平分線上。

  用法1:∵ QD⊥OA,QE⊥OB用法2:∵ QD⊥OA,QE⊥OB,QD=QE。

  ∴點Q在∠AOB的平分線上。 ∴點Q在∠AOB的平分線上

  ∴ QD=QE

  3、總結提高:學習全等三角形應注意以下幾個問題

  (1)要正確區分“對應邊”與“對邊”,“對應角”與“對角”的不同含義;

  (2)表示兩個三角形全等時,表示對應頂點的字母要寫在對應的位置上;

  (3)要記住“有三個角對應相等”或“有兩邊及其中一邊的對角對應相等”的兩個三角形不一定全等;

  (4)時刻注意圖形中的隱含條件,如“公共角” 、“公共邊”、“對頂角”。

  練習:

  練習1:如圖,D在AB上,E在AC上,AB=AC ,∠B=∠C,試問AD=AE嗎?

  2、如圖,OB⊥AB,OC⊥AC,垂足為B,C,OB=OC,AO平分∠BAC嗎?

  3、如圖,小明不慎將一塊三角形模具打碎為兩塊,他是否可以只帶其中的一塊碎片到商店去,就能配一塊與原來一樣的三角形模具呢?如果可以,帶那塊去合適?為什么?

  4、如圖,已知AC∥EF,DE∥BA,若使△ABC≌△EDF,還需要補

  充的條件可以是

  5、已知AC=DB, ∠1=∠2.求證: ∠A=∠D

  6、如圖,已知,AB∥DE,AB=DE,AF=DC。請問圖中有那幾對全等三角形?請任選一對給予證明。

  7、如圖,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD嗎?為什么?

  8、已知,△ABC和△ECD都是等邊三角形,且點B,C,D在一條直線上求證:BE=AD

  9、求證:有一條直角邊和斜邊上的高對應相等的兩個直角三角形全等。

  10、將紙片△ABC沿DE折疊,點A落在點F處,已知∠1+∠2=100°,則∠A=度;

  11、如圖6,已知:∠A=90°,AB=BD,ED⊥BC于D.求證:AE=ED

  三軸對稱

  1、把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關于這條直線(成軸)對稱。

  2、把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應點,叫做對稱點。

  3、軸對稱的性質:①關于某直線對稱的兩個圖形是全等形。

  ②如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。

  ③軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

  ④如果兩個圖形的對應點連線被同條直線垂直平分,那么這兩個圖形關于這條直線對稱。

  4、線段的垂直平分線:經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。

  性質:線段垂直平分線上的點與這條線段的兩個端點的`距離相等(純粹性)。

  逆定理:與一條線段兩個端點距離相等的點,在線段的垂直平分線上。(完備性)

  線段垂直平分線的集合定義:線段垂直平分線可以看作是與線段兩個端點距離相等的所有點的集合。

  5、用坐標表示軸對稱小結:

  在平面直角坐標系中,關于x軸對稱的點橫坐標相等,縱坐標互為相反數.關于y軸對稱的點橫坐標互為相反數,縱坐標相等。

  利用軸對稱變換作圖:要在燃氣管道L上修建一個泵站,分別向A、B兩鎮供氣,泵站修在管道什么地方,可使所用的輸氣管道線最短?

  6、等腰三角形

  1.等腰三角形的性質

  ①.等腰三角形的兩個底角相等。(等邊對等角)

  ②.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)

  2、等腰三角形的判定:

  如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)。

  7、等邊三角形

  (1)等邊三角形的性質:等邊三角形的三個角都相等,并且每一個角都等于600 。

  (2)等邊三角形的判定:

  ①三個角都相等的三角形是等邊三角形。②有一個角是60度的等腰三角形是等邊三角形。

  (3)在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。

  練習1:在△ABC中,AB=AC時,(1)∵AD⊥BC

  ∴∠ ____= ∠_____;____=____

  (2) ∵AD是中線

  ∴____⊥____; ∠_____= ∠_____

  (3) ∵ AD是角平分線

  ∵____ ⊥____;_____=____

  2、如圖1,AD是△ABC的角平分線,BE⊥AD交AD的延長線于E,EF∥AC交AB于F,求證:AF=FB.

  3、某等腰三角形的兩條邊長分別為3 cm和6 cm,則它的周長為:

  4、等腰三角形的一個角為30°,則底角為___________.

  5、已知:如圖5,AB=AC,BD⊥AC.求證:∠DBC=1/2∠A。

  6、如圖6,在△ABC中,AB=AC,在AB上取一點E,在AC延長線上取一點F,使BE=CF,EF交BC于G,EM∥CF.求證:EG=FG.

  第十四章整式和因式分解

  一、冪的4個運算性質

  1、同底數冪的乘法:am · an = am+n

  2、同底數冪的除法:am÷an =am-n;a0=1(a≠0)

  3、冪的乘方: (am )n = amn

  4、積的乘方: (ab)n = anbn

  如:(1)(-1)20xx+π0= (x-3)x+2=1,求x.

  (2)若10x=5,10y=4,求102x+3y-1的值.

  (3)計算:0.251000×(-2)20xx

  二、乘法公式

  1、平方差公式:(a+b)(a-b)=a2-b2

  2、完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2

  3、三數和的平方公式:(a+b+c)2=a2+b2 +c2+2ab+2ac+2bc

  計算:(3x+4)(3x-4)-(2x+3)(3x-2)

  (1-x)(1+x)(1+x2)(1-x4)

  (x+4y-6z)(x-4y+6z)

  (x-2y+3z)2

  簡便計算:(1)98×102

  (2)2992

  (3) 20062-20xx×20xx

  活學活用:已知a+b=5,ab= -2,求(1)a2+b2(2)a-b

  三、因式分解

  因式分解方法:一提二套三看

  一提:提公因式提負號

  二套:套平方差、完全平方、十字相乘法

  三看:看是否分解完全。

  如:x5-16x -4a 2+4ab- b 2 m 2(m-2)-4m(2-m) 4a2- 16(a-2) 2

  a、多項式x2-4x+4、x2-4的公因式是

  b、已知x2-2mx+16是完全平方式則m為

  c、已知x2-8x+m是完全平方式,則m=

  d、已知x2-8x+m2是完全平方式,則m=

  e、如果(2a+2b+1)(2a+2b-1)=63,那么a+b=

  f、如果(a2 +b2 )(a2 +b2 -1)=20,那么a2 +b2 =_____

  簡便計算:(-2)20xx+(-2)20xx

  20xx+20052-20062

  3992+399

中考數學知識點總結7

  1、有理數的.加法運算:

  同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好、

  2、合并同類項:

  合并同類項,法則不能忘,只求系數和,字母、指數不變樣、

  3、去、添括號法則:

  去括號、添括號,關鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號、

  4、一元一次方程:

  已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒、

  5、平方差公式:

  平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆、

  1、完全平方公式:

  完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;

  首±尾括號帶平方,尾項符號隨中央、

  2、因式分解:

  一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚、

  3、單項式運算:

  加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行、

  4、一元一次不等式解題的一般步驟:

  去分母、去括號,移項時候要變號,同類項合并好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了、

  5、一元一次不等式組的解集:

  大大取較大,小小取較小,小大、大小取中間,大小、小大無處找、

  一元二次不等式、一元一次絕對值不等式的解集:

  大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。

中考數學知識點總結8

  一、初中數學基本知識

  ㈠、數與代數

  A、數與式:

  1、有理數

  有理數:①整數→正整數/0/負整數

  ②分數→正分數/負分數

  數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

  絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

  有理數的運算:

  加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。③一個數與0相加不變。

  減法:減去一個數,等于加上這個數的相反數。

  乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。

  除法:①除以一個數等于乘以一個數的倒數。②0不能作除數。

  乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數

  無理數:無限不循環小數叫無理數

  平方根:①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

  立方根:①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

  實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。

  3、代數式

  代數式:單獨一個數或者一個字母也是代數式。

  合并同類項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。

  4、整式與分式

  整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:AMAN=A(MN)

  (AM)N=AMN

  (A/B)N=AN/BN除法一樣。

  整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的.積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

  ①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

  ②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

  ①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

  ②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數。

  加減法:

  ①同分母的分式相加減,分母不變,把分子相加減。

  ②異分母的分式先通分,化為同分母的分式,再加減。

  分式方程:

  ①分母中含有未知數的方程叫分式方程。

  ②使方程的分母為0的解稱為原方程的增根。

  20xx年中考數學基礎知識總結20xx年中考數學基礎知識總結

  B、方程與不等式

  1、方程與方程組

  一元一次方程:

  ①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。

  ②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。

  二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程

  1)一元二次方程的二次函數的關系

  大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程變為完全平方公式,在用直接開平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

  (3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

  3)解一元二次方程的步驟:

  (1)配方法的步驟:

  先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

  (3)公式法

  就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c

  4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用

  5)一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diata”,而△=b2-4ac,這里可以分為3種情況:

  I當△>0時,一元二次方程有2個不相等的實數根;

  II當△=0時,一元二次方程有2個相同的實數根;

  III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)

  2、不等式與不等式組

  不等式:

  ①用符號〉,=,〈號連接的式子叫不等式。

  ②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

  ③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

  ④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

  不等式的解集:

  ①能使不等式成立的未知數的值,叫做不等式的解。

  ②一個含有未知數的不等式的所有解,組成這個不等式的解集。

  ③求不等式解集的過程叫做解不等式。

  一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。

  一元一次不等式組:

  ①關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

  ②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

  ③求不等式組解集的過程,叫做解不等式組。

  一元一次不等式的符號方向:

  在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。

  在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,AC>BC

  在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C

  在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)

  在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C

  如果不等式乘以0,那么不等號改為等號

  所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘以的數就不等為0,否則不等式不成立;

  二、函數

  變量:因變量,自變量。

  在用圖象表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。

  一次函數:①若兩個變量X,間的關系式可以表示成=XB(B為常數,不等于0)的形式,則稱是X的一次函數。②當B=0時,稱是X的正比例函數。

  一次函數的圖象:①把一個函數的自變量X與對應的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數=X的圖象是經過原點的一條直線。③在一次函數中,當〈0,B〈O,則經234象限;當〈0,B〉0時,則經124象限;當〉0,B〈0時,則經134象限;當〉0,B〉0時,則經123象限。④當〉0時,的值隨X值的增大而增大,當X〈0時,的值隨X值的增大而減少。

  三、空間與圖形

  A、圖形的認識

  1、點,線,面

  點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。

  展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  20xx年中考數學基礎知識總結建造師考試_建筑工程類工程師考試網

  弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。

  2、角

  線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。

  比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。

  角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質定理:在垂直平分線上的點到該線段兩端點的距離相等;

  判定定理:到線段2端點距離相等的點在這線段的垂直平分線上

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

  性質定理:角平分線上的點到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點在該角的角平分線上

  正方形:一組鄰邊相等的矩形是正方形

  性質:正方形具有平行四邊形、菱形、矩形的一切性質

中考數學知識點總結9

  第一章實數

  考點一、實數的概念及分類(3分)

  1、實數的分類

  正有理數

  有理數零有限小數和無限循環小數實數負有理數正無理數

  無理數無限不循環小數負無理數

  整數包括正整數、零、負整數。

  正整數又叫自然數。

  正整數、零、負整數、正分數、負分數統稱為有理數。

  2、無理數

  在理解無理數時,要抓住“無限不循環”這一時之,歸納起來有四類:

  (1)開方開不盡的數,如7,32等;

  (2)有特定意義的數,如圓周率π,或化簡后含有π的數,如

  (3)有特定結構的數,如0.1010010001等;

  (4)某些三角函數,如sin60o等

  考點二、實數的倒數、相反數和絕對值(3分)

  1、相反數

  實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關于原點對稱,如果a與b互為相反數,則有a+b=0,a=b,反之亦成立。

  2、絕對值

  一個數的絕對值就是表示這個數的點與原點的距離,|a|≥0。零的絕對值時它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。正數大于零,負數小于零,正數大于一切負數,兩個負數,絕對值大的反而小。

  3、倒數

  如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒有倒數。

  考點三、平方根、算數平方根和立方根(310分)

  1、平方根

  如果一個數的平方等于a,那么這個數就叫做a的平方根(或二次方跟)。一個數有兩個平方根,他們互為相反數;零的平方根是零;負數沒有平方根。正數a的平方根記做“。a”

  π+8等;

  2、算術平方根

  正數a的正的平方根叫做a的算術平方根,記作“a”。正數和零的'算術平方根都只有一個,零的算術平方根是零。a(a0)a0

  a2a;注意a的雙重非負性:

  -a(a考點六、實數的運算(做題的基礎,分值相當大)

  1、加法交換律abba

  2、加法結合律(ab)ca(bc)

  3、乘法交換律abba

  4、乘法結合律(ab)ca(bc)

  5、乘法對加法的分配律a(bc)abac

  6、實數混合運算時,對于運算順序有什么規定?

  實數混合運算時,將運算分為三級,加減為一級運算,乘除為二能為運算,乘方為三級運算。同級運算時,從左到右依次進行;不是同級的混合運算,先算乘方,再算乘除,而后才算加減;運算中如有括號時,先做括號內的運算,按小括號、中括號、大括號的順序進行。

  7、有理數除法運算法則就什么?

  兩有理數除法運算法則可用兩種方式來表述:第一,除以一個不等于零的數,等于乘以這個數的倒數;第二,兩數相除,同號得正,異號得負,并把絕對值相除。零除以任何一個不為零的數,商都是零。

  8、什么叫有理數的乘方?冪?底數?指數?

  相同因數相乘積的運算叫乘方,乘方的結果叫冪,相同因數的個數叫指數,這個因數叫底數。記作:an

  9、有理數乘方運算的法則是什么?

  負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數。零的任何正整數冪都是零。

  10、加括號和去括號時各項的符號的變化規律是什么?

  去(加)括號時如果括號外的因數是正數,去(加)括號后式子各項的符號與原括號內的式子相應各項的符號相同;括號外的因數是負數去(加)括號后式子各項的符號與原括號內式子相應各項的符號相反。

  平行線與相交線

  知識要點

  一.余角、補角、對頂角

  1,余角:如果兩個角的和是直角,那么稱這兩個角互為余角.

  2,補角:如果兩個角的和是平角,那么稱這兩個角互為補角.

  3,對頂角:如果兩個角有公共頂點,并且它們的兩邊互為反向延長線,這樣的兩個角叫做對頂角.

  4,互為余角的有關性質:

  ①∠1+∠2=90°,則∠1、∠2互余;反過來,若∠1,∠2互余,

  則∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3=90°,則∠2=∠3.

  5,互為補角的有關性質:①若∠A+∠B=180°,則∠A、∠B互補;反過來,若∠A、∠B互補,則∠A+∠B=180°.

  ②同角或等角的補角相等.如果∠A+∠C=180°,∠A+∠B=180°,則∠B=∠C.

  6,對頂角的性質:對頂角相等.

  二.同位角、內錯角、同旁內角的認識及平行線的性質

  7,同一平面內兩條直線的位置關系是:相交或平行.

  8,“三線八角”的識別:

  三線八角指的是兩條直線被第三條直線所截而成的八個角.

  正確認識這八個角要抓住:同位角位置相同,即“同旁”和“同規”;內錯角要抓住“內部,兩旁”;同旁內角要抓住“內部、同旁”.三.平行線的性質與判定

  9,平行線的定義:在同一平面內,不相交的兩條直線是平行線.

  10,平行線的性質:兩條平行線被第三條直線所截,同位角相等,內錯角相等,同旁內角互補.

  11,過直線外一點有且只有一條直線和已知直線平行.

  12,兩條平行線之間的距離是指在一條直線上任意找一點向另一條直線作垂線,垂線段的長度就是兩條平行線之間的距離.

  13,如果兩條直線都與第三條直線平行,那么這兩條直線互相平行.

  14,平行線的判定:兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;如果內錯角相等.那么這兩條直線平行;如果同旁內角互補,那么這兩條直線平行.這三個條件都是由角的數量關系(相等或互補)來確定直線的位置關系(平行)的,因此能否找到兩直線平行的條件,關鍵是能否正確地找到或識別出同位角,內錯角或同旁內角.

  15,常見的幾種兩條直線平行的結論:

  (1)兩條平行線被第三條直線所截,一組同位角的角平分線平行;

  (2)兩條平行線被第三條直線所截,一組內錯角的角平分線互相平行.

  四.尺規作圖

  16,只用沒有刻度的直尺和圓規的作圖的方法稱為尺規作圖.用尺規可以作一條線段等于已知線段,也可以作一個角等于已知角.利用這兩種兩種基本作圖可以作出兩條線段的和或差,也可以作出兩個角的和或差.

中考數學知識點總結10

  不等式與不等式組

  1.定義:

  用符號〉,=,〈號連接的式子叫不等式。

  2.性質:

  ①不等式的兩邊都加上或減去同一個整式,不等號方向不變。

  ②不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

  ③不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

  3.分類:

  ①一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的'最高次數是1的不等式叫一元一次不等式。

  ②一元一次不等式組:

  a.關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

  b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

  4.考點:

  ①解一元一次不等式(組)

  ②根據具體問題中的數量關系列不等式(組)并解決簡單實際問題

  ③用數軸表示一元一次不等式(組)的解集

中考數學知識點總結11

  把一個數寫做的形式,其中,n是整數,這種記數法叫做科學記數法。

  (1)確定:是只有一位整數數位的'數.

  (2)確定n:當原數≥1時,等于原數的整數位數減1;;當原數<1時,是負整數,它的絕對值等于原數中左起第一個非零數字前零的個數(含整數位上的零)。

  例如:-40700=-4.07×105,0.000043=4.3×10ˉ5.

  (3).近似值的精確度:一般地,一個近似數,四舍五入到哪一位,就說這個近似數精確到哪一位

  (4)按精確度或有效數字取近似值,一定要與科學計數法有機結合起來.

中考數學知識點總結12

  (1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

  (2)有理數的分類:①整數②分數

  (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的`特性;

  (4)自然數0和正整數;a>0a是正數;a<0a是負數;

  a≥0a是正數或0a是非負數;a≤0?a是負數或0a是非正數.

  有理數比大小:

  (1)正數的絕對值越大,這個數越大;

  (2)正數永遠比0大,負數永遠比0小;

  (3)正數大于一切負數;

  (4)兩個負數比大小,絕對值大的反而小;

  (5)數軸上的兩個數,右邊的數總比左邊的數大;

  (6)大數-小數>0,小數-大數<0.

中考數學知識點總結13

  1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式;數字或字母的乘積叫單項式(單獨的一個數字或字母也是單項式)。

  2.系數:單項式中的數字因數叫做這個單項式的系數。所有字母的指數之和叫做這個單項式的次數。任何一個非零數的零次方等于1.

  3.多項式:幾個單項式的和叫多項式。

  4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

  5.常數項:不含字母的項叫做常數項。

  6.多項式的.排列

  (1)把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

  (2)把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

  7.多項式的排列時注意:

  (1)由于單項式的項,包括它前面的性質符號,因此在排列時,仍需把每一項的性質符號看作是這一項的一部分,一起移動。

  (2)有兩個或兩個以上字母的多項式,排列時,要注意:

  a.先確認按照哪個字母的指數來排列。

  b.確定按這個字母向里排列,還是向外排列。

  (3)整式:

  單項式和多項式統稱為整式。

  8.多項式的加法:

  多項式的加法,是指多項式的同類項的系數相加(即合并同類項)。

  9.同類項:所含字母相同,并且相同字母的次數也分別相同的項叫做同類項。

  10.合并同類項:多項式中的同類項可以合并,叫做合并同類項,合并同類項的法則是:同類項的系數相加,所得的結果作為系數,字母與字母的指數不變。

  11.掌握同類項的概念時注意:

  (1)判斷幾個單項式或項,是否是同類項,就要掌握兩個條件:

  ①所含字母相同。

  ②相同字母的次數也相同。

  (2)同類項與系數無關,與字母排列的順序也無關。

  (3)所有常數項都是同類項。

  12.合并同類項步驟:

  (1)準確的找出同類項;

  (2)逆用分配律,把同類項的系數加在一起(用小括號),字母和字母的指數不變;

  (3)寫出合并后的結果。

  13.在掌握合并同類項時注意:

  (1)如果兩個同類項的系數互為相反數,合并同類項后,結果為0;

  (2)不要漏掉不能合并的項;

  (3)只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

  14.整式的拓展

  整式的乘除:重點是整式的乘除,尤其是其中的乘法公式。乘法公式的結構特征以及公式中的字母的廣泛含義,學生不易掌握.因此,乘法公式的靈活運用是難點,添括號(或去括號)時,括號中符號的處理是另一個難點。添括號(或去括號)是對多項式的變形,要根據添括號(或去括號)的法則進行。在整式的乘除中,單項式的乘除是關鍵,這是因為,一般多項式的乘除都要“轉化”為單項式的乘除。

  整式四則運算的主要題型有:

  (1)單項式的四則運算

  此類題目多以選擇題和應用題的形式出現,其特點是考查單項式的四則運算。

  (2)單項式與多項式的運算

  

中考數學知識點總結14

  中位線概念

  (1)三角形中位線定義:連接三角形兩邊中點的線段叫做三角形的中位線。

  (2)梯形中位線定義:連接梯形兩腰中點的線段叫做梯形的中位線。

  注意(1)要把三角形的中位線與三角形的中線區分開。三角形中線是連接一頂點和它的對邊中點的線段,而三角形中位線是連接三角形兩邊中點的線段。

  (2)梯形的中位線是連接兩腰中點的線段而不是連結兩底中點的線段。

  (3)兩個中位線定義間的'聯系:可以把三角形看成是上底為零時的梯形,這時三角形的中位線就變成梯形的中位線。

  中位線定理

  (1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.

  (2)梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.

  中位線定理推廣

  三角形有三條中位線,首尾相接時,每個小三角形面積都等于原三角形的四分之一,這四個三角形都互相全等。

中考數學知識點總結15

  在日常的練習、作業和考試中,學生都會或多或少地出現一些做錯的題目,而對待錯題的態度不同,學習的效果就會有很大的差別。丁老師就來告訴同學們怎么來用好我們的錯題吧!

  錯題主要涉及錯題收集和存檔、錯題改正、錯題分享、錯題應用四個環節。

  一、錯題收集和存檔:

  這里的錯題,不僅指各級各類數學考試中的錯題,還包括平時數學作業中做錯的題目。最好把錯題都摘錄到一個固定的本子上面(錯題本),便于自己以后查閱。即使是曾經錯了而現在理解了的題目也最好登記在冊,它們形成獨具個性的學習軌跡,有利于知識的理解、識記、儲存和提取。

  在進行錯題收集的時候,一定要注意分類。分類的方法很多,可以按照錯題原因分類、按照錯題中所隱含知識的章節進行分類,甚至還可以按照題型進行分類。這樣整理好的'錯題是系統的,到最后復習時就有比較強的針對性。

  二、錯題改正:

  收集錯題以后,接下來就是改錯了,這是錯題管理的目的。學生要爭取自己獨立對錯題進行分析,然后找出正確的解答,并訂正。在自己獨立思考的基礎上,如果還是得不到答案,這時候就需要積極地求助他人了,可以是學得比較好的同學,也可以是老師。讓他們幫自己分析原因,在他們的啟發引導下進行改正。找到出錯的癥結所在,最好能在錯題后面附上自己的心得體會,可以依次回答以下問題:

  這道題目錯在什么地方?

  這道題目為什么做錯了?(錯在計算、化簡?錯在概念理解?錯在理解題意?錯在邏輯關系?錯在以偏概全?錯在粗心大意?錯在思維品質?錯在類比?等等。)

  這道題目正確的做法是什么?

  這道題目有沒有其它解法?哪種方法更好?

  錯題改正這個過程其實就是學生再學習、再認識、再提高的過程,它使學生對易出錯的知識的理解更全面透徹,掌握更加牢固,同時也提高了學生自主學習的能力。一般意義上,任何學習都需要反思,錯題改正是反思的具體途徑之一。

  整理錯題并不是為了做得好看,是為了實用,對自己的學習有幫助。因而沒有固定的標準,關鍵要符合學生自己的習慣。但是學生一定要抽時間翻閱自己辛勤勞動的結晶,對其中的錯題進行溫習,這樣做有時候可以收到意想不到的效果,會有新的體會。其實整理好的錯題集就相當于是以前做過的大量習題中的精華薈萃(這要建立在學生認真整理的基礎上),是最適合學生個人的學習資料,比任何一本參考書、習題集都有用,有價值。

  三、錯題分享:

  在現行的學習體制下,學生之間的競爭意識很強,但是主動交流分享意識非常薄弱。其實同學就是一個巨大的學習資源庫,只要每個學生都愿意敞開心扉,真誠地交流,相互扶持,相互幫助和鼓勵,學生就可以從同學身上學到很多東西。正所謂“你有一種思想,我有一種思想,交流之后我們就同時擁有了兩種思想”,學生之間的錯題集也可以相互交流。這是因為每個學生出錯的原因各不相同,所以每個人建立的錯題集也不同,通過相互交流可以從別人的錯誤中汲取教訓,拓展自己的視野,得到啟發,以警示自己不犯同樣錯誤。不同的人從相同的題目中得到的是不同的體會,通過交流大家就可以領略到知識的不同側面,從而對知識掌握得更加牢固。在交流的氛圍中,學生改變了學習方式,增強了學習數學的積極性。

  四、錯題應用:

  將錯題收集在一起并改正,還不能完全說明學生對這一知識點的漏洞就補好了。最好的狀況是對于每一個錯題,學生自己還必須查找資料,找出與之相同或相關的題型,進行練習解答。如果沒有困難,則說明學生對這一知識點可能已經掌握。此時,學生可以嘗試著進行更高難度的事情:錯題改編。將題目中的條件和結論換一下,還成立嗎?把條件減弱或者把結論加強,命題還成立嗎?或者嘗試著編一道類似的題目,還能做嗎?經歷了這么一個思維洗禮,學生對知識的理解會更深刻,對方法的把握會更透徹,不管條件怎么變,他們基本上都可以應付自如了。一般情況下,學生在學校可能沒有這么充裕的時間來做這樣的事情,但是學生之間相互協助,每人找一個類型的題目,或者每人提出一個想法,全班合起來就基本找全了所有的題型,改編了很多道類似的題目。

  錯題管理有助于學生的數學學習。但是,錯題管理并不是學習的目的,而是幫助學生進行有效學習的一種手段。制作錯題集更不是任務,不一定要做得精致、全面,它只是一種訓練思維的載體。最關鍵的是,學生和老師不能輕易放過錯題,徹底弄清楚錯題所反映的問題,學以致用。在反思學習的過程中完善自己的知識結構,提升解決問題的能力,實現有效學習和有效教學的終極目標。

【中考數學知識點總結】相關文章:

中考數學圓知識點總結01-13

中考數學知識點總結05-24

[實用]中考數學知識點總結05-24

中考數學知識點03-15

中考數學必考知識點03-12

中考數學知識點歸納總結優秀05-08

2018中考數學知識點總結12-31

中考數學重點知識點歸納04-26

中考數學知識點精選(3篇)05-08

主站蜘蛛池模板: 峨眉山市| 历史| 区。| 阿尔山市| 佛山市| 漯河市| 平舆县| 三穗县| 博客| 怀来县| 思茅市| 道孚县| 丰城市| 庆城县| 陆丰市| 长白| 邓州市| 玉山县| 临汾市| 昌江| 枣强县| 松桃| 长汀县| 尼勒克县| 根河市| 广元市| 金溪县| 四会市| 托里县| 嘉定区| 于田县| 安宁市| 广水市| 汉阴县| 衢州市| 胶南市| 丰原市| 蕉岭县| 泽州县| 韶关市| 互助|