- 相關推薦
五年級下冊《分數的基本性質》教學設計(精選14篇)
作為一位兢兢業業的人民教師,總歸要編寫教學設計,教學設計是一個系統設計并實現學習目標的過程,它遵循學習效果最優的原則嗎,是課件開發質量高低的關鍵所在。那么問題來了,教學設計應該怎么寫?以下是小編為大家收集的五年級下冊《分數的基本性質》教學設計,僅供參考,大家一起來看看吧。
五年級下冊《分數的基本性質》教學設計 篇1
一、故事引人,揭示課題。
1、教師講故事。猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。同學們,你知道哪只猴子分得多嗎?
討論:哪只猴子分得的多?讓學生發表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。
引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數的基本性質”就清楚了。(板書課題)
[一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。]
2、組織討論。
(1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,1/4=2/8=3/12,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。
(2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?通過觀察演示得出:3/4=6/8=9/12。
(3)我們班有50名同學,分成了五組,每組10人。那么第一、二組學生的人數占全班學生人數的幾分之幾?引導學生用不同的分數表示,然后得出:1/2=2/4=20/40。
3、引入新課:黑板上三組相等的分數有什么共同的特點?學生回答后板書:
分數的分子和分母變化了,分數的大小不變。
它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。
3、出示例2:把1/2和10/24化成分母是12而大小不變的分數。
思考:要把1/2和10/24化成分母是12而大小不變的分數,分子怎么不變?變化的依據是什么?
4、討論:猴王運用什么規律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
[得出性質后,再讓學生說出猴王的想法,并回答如果小猴子要四塊,猴王怎么辦?既前后照應,又讓學生在輕松愉快的幫猴王想辦法的過程中,運用新知解決實際問題。]
5、質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。
通過舉例,溝通分數的基本性質與商不變性質之間的聯系。引導學生運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12
[有助于學生順利地運用分數與除法的關系,以及整數除法中商不變性質說明分數的基本性質,實現新知化歸舊知。]它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。
二、比較歸納,揭示規律。
1、出示思考題。
2、比較每組分數的分子和分母:
(1)從左往右看,是按照什么規律變化的?
(2)從右往左看,又是按照什么規律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2、集體討論,歸納性質。(1)從左往右看,由3/4到6/8,分子、分母是怎么變化的?引導學生回答出:把3/4的分子、分母都乘以2,就得到6/8。原來把單位“1”平均分成4份,表示這樣的3份,現在把分的份數和表示份數都擴大2倍,就得到6/8。
板書:
(2)3/4是怎樣變化成9/12的呢?怎么填?學生回答后填空。
(3)引導口述:3/4的分子、分母都乘以2,得到6/8,分數的大小不變。
(4)在其它幾組分數中,分子、分母的變化規律怎樣?幾名學生回答后,要求學生試著歸納變化規律:分數的分子和分母都乘以相同的數,分數的大小不變。
(板書:都乘以相同的數)
(5)從右往左看,分數的分子和分母又是按照什么規律變化的'?通過分析比較每組分數的分子和分母,得出:分數的分子和分母都乘以相同的數,分數的大小不變。
(板書:都除以)
(6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二“都”字,換成“或者”)再對照教科書中的分數基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規定“零除外”?
(板書:零除外)
(7)齊讀分數的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數基本性質。
[新知識力求讓學生主動探索,逐步獲取。“猴王分餅”和分析班級學生人數得出的三組相等的分數為學生探索新知提供材料,出示的思考題是學生探求新知、獨立思考的指南,教師環緊扣的提問以及引導學生逐步展開的充分的討論,幫助學生一步步走向結論。]
五年級下冊《分數的基本性質》教學設計 篇2
教學目標:
1、通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。
2、培養學生的觀察能力、動手操作能力和分析概括能力等。
3、讓學生在學習過程中養成互相幫助、團結協作的良好品德。
重點難點:
從相等的分數中看出變與不變,觀察、發現、概括其中的規律。理解分數的基本性質。
教具學具:
課件,每人一張白紙,一張圓紙片,彩筆
教學時間:
1課時
教學流程:
一、復習引入
1、120÷30的商是多少?被除數和除數同時擴大3倍,商是多少?被除數和除數同時縮小10倍,商是多少?
120÷30=4
(120×3)÷(30×3)
=360÷90
=4
120÷30=4
(120÷10)÷(30÷10)
=12÷3
=4
在除法中,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。
除法與分數之間有什么聯系?
被除數÷除數=被除數/除數
教師板書:分數的基本性質
二、動手操作
(1)用分數表示涂色部分。
①請大家拿出1張長方形紙片,現在我們把它對折平均分成4份,涂出其中的3份,寫上分數。
②把它繼續對折平均分成8份,看看原來的3/4現在成了?(6/8)
③繼續折成16份,看看原來的3/4現在又成了?(12/16)
(2)小結:原來,這張紙的3/4、6/8、和它的12/16同樣大!看來不管選擇哪種折法,分到的數都一樣多!
(教師隨機板書)3/4=3×2/4×2=6/8=6×2/8×2=12/16
(2)用分數表示涂色部分。
根據上面的過程,你能得到一組相等的分數嗎?
8/12=8÷2/12÷2=4÷2/6÷2=2/3
三、發現規律
1、請大家觀察每個等式中的兩個分數,它們的分子。分母是怎樣變化的?
學生觀察、思考,完成上面的圖形,再在小組內交流。
學生交流后,教師集中指導觀察,板書這組數字,說出其中的規律。
3/4=6/8=12/168/12=4/6=2/3
從這些數字中可以得出:
分數的分子和分母同時乘或者除以相同的數,分數的.大小不變。(相同的數,這個數能不能是0?)
教師舉例說明:3/4,8/12分子和分母分別乘以零,分數大小怎么樣?
得出分數基本性質:分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。這叫做分數基本性質。
在除法中,被除數和除數同時擴大(或縮小)相同的倍數(零除外),商不變。這叫做商不變性質。
3、課件出一組分數讓學生練習填
2/3=()/126/21=()/73/5=21/()27/39=9/()5/8=20/()24/42=()/72/5=()/254/6=()/()
四、練一練(課件出示)
1、判斷、(手勢表示。)
(1)分數的分子、分母都乘或除以相同的數,分數的大小不變。()(2)把15/20的分子縮小5倍,分母也同時縮小5倍,分數的大小不變。()
(3)3/4的分子乘3,分母除以3,分數的大小不變。()
(4)把3/5的分子加上4,要使分數的大小不變,分母加4。()
2、把5/6和1/4都化成分母是12大小不變的分數。(課件出示)
3、數學游戲(課件出示)
說出相等的分數1/4和2/8
(1)你能根據分數的基本性質,再寫出一組相等的分數?
所寫的分數是否相等?你是怎樣想的?
(2)根據分數與除法的關系,你能用商不變的規律來說明分數的基本性質嗎?
五、課本練習中的第1,2題。
六、課堂總結
這節課你學到了什么?什么是分數的基本性質?你是怎樣理解的分數的基本性質要注意什么?我們以前學過的什么性質跟分數的基本性質類似?誰能用整數除法中商不變的性質來說明分數的基本性質?
七、板書設計:
3/4=3×2/4×2=6/8=6×2/8×2=12/16
8/12=8÷2/12÷2=4÷2/6÷2=2/3
分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。這叫做分數基本性質。
五年級下冊《分數的基本性質》教學設計 篇3
教學目標:
1、知識目標:通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。
2、能力目標:培養學生的觀察能力、動手操作能力和分析概括能力等。
3、情感目標:讓學生在學習過程中養成互相幫助、團結協作的良好品德。
教學準備:
長方形紙片、彩筆、各種分數卡片。
教學過程
一、創設情境,激發興趣
1、課件示故事。同學們,今天是快樂的,老師祝愿同學們節日快樂!在我們歡慶自己的節日時,花果山圣地也早已是一派節日喜慶的氣氛。
【六一節到了,猴山上張燈結彩,小猴們享受著節日的快樂。猴王給小猴們做了三塊他們愛吃的餅。它先把第一塊餅平均切成四塊,分給第一只小猴貝貝一塊。第二只小猴佳佳見到說:“太小了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給第二只小猴兩塊。第三只小猴丁丁急了,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給第三只小猴丁丁三塊。貝貝、佳佳見了,連忙說:“猴爺爺,不公平,不公平,我們要分得和丁丁的同樣多。”】
“同學們,猴王真的分得不公平嗎?”
二、動手操作、導入新課
同學們,這個故事告訴了我們什么?猜想一下猴王分得公平嗎?為什么公平?我們平常怎樣去做?讓我們也來分分看。請每組拿出課前準備的三張長方形紙片,共同來分一分,并完成操作報告(課件出示操作報告)。請小組長分工一下,明確記錄的同學。
任選一小組的同學臺前展示實驗報告,并匯報結論。
教師根據學生匯報板書:14=28=312
2、組織討論。
(1)通過操作我們發現三只猴子分得的餅同樣多,表示它們分得餅的分數是相等關系。那么,這三個分數什么變了,什么沒有變?讓學生小組討論后答出:它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。
(2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?學生通過觀察演示得出結論教師板書:34=68=912。
3、引入新課:黑板上二組相等的分數有什么共同的特點?學生回答后板書:分數的分子和分母,分數的大小不變。雖然他們的分子和分母變化了,但是它們的'大小卻不變。那么他們的分子和分母變化有規律嗎?我們今天就來共同探討這個變化規律。
三、比較歸納,揭示規律。
請每組拿出探究報告,任意選擇黑板上的二組相等分數中的一組,共同討論、探究,并完成探究報告。
1、課件出示探究報告。
2、分組匯報,歸納性質。
(1)從左往右看,分子、分母的變化規律怎樣?選擇一組學生根據探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。
(根據學生回答板書:同時乘上相同的數)
(2)從右往左看,分數的分子和分母又是按照什么規律變化的?
(根據學生的回答板書:除以)
(3)有與這一組探究的分數不一樣的嗎?你們得出的規律是什么?
(4)綜合剛才的探究,你發現什么規律?
根據學生的回答,揭示課題,
(……這叫做板書:分數的基本性質)
對這句話你還有什么要補充的?(補充“零除外”)
討論:為什么性質中要規定“零除外”?
(紅筆板書:零除外)
(5)齊讀分數的基本性質。在分數的基本性質中,你認為要提醒大家注意些什么?(同時、相同的數、0除外)。為什么?你能舉例說明嗎?教師則根據學生回答,在相應的字下面點上著重號。
師生共同讀出黑板上板書的分數基本性質(要求關鍵的字詞要重讀)。
3、智慧眼(下列的式子是否正確?為什么?)
(1)35=3×25=65(生:35的分子與分母沒有同時乘以2,分數的大小改變。)
(2)512=5÷512÷6=12(生:512的分子除以5,分母除以6,除數的大小不同,分數的大小也不同)
(3)112=1×312÷3=34(生:112的分子乘以3,而分母除以3,沒有同時乘以或除以,分數的大小不相等。)
(4)25=2×x5×x=2x5x(生:x在這里代表任何數,當x=0時,分數的大小改變。)
4、示課件討論:現在你知道猴王運用什么規律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?用分數表示為?如果要五塊呢?
三、回歸書本,探源獲知
1、瀏覽課本第107—108頁的內容。
2、看了書,你又有什么收獲?還有什么疑問嗎?
3、師生答疑。
你會運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質嗎?
4、自主學習并完成例2,請二名學生說出思路。
四、多層練習,鞏固深化。
1、熱身房。35=3×()5×()=9()
824=8÷()24÷()=()3
學生口答后,要求說出是怎樣想的?
五年級下冊《分數的基本性質》教學設計 篇4
一、教學目標:
1、讓學生經歷分數基本性質的探究過程,理解和掌握分數的基本性質,初步建立數學模型。
2、利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。
3、培養學生的觀察、概括等思維能力及(滲透變與不變)數學學習興趣。
二、教學重點:
理解掌握分數的基本性質,它是約分,通分的依據
三、教學難點:
理解和掌握分數的基本性質,初步建立數學模型。
四、教學準備:
課件、正方形的紙。
五、教學設計過程:
(一)遷移舊知、提出猜想
1、回憶舊知
猜信封:老師手上的信封里有一個數、一道算式,我抽出其中一張,誰能猜出另一張是什么?出示:2÷3
你為什么這樣猜呢?引導學生回憶分數與除法的關系。媒體演示:分數與除法的關系:
被除數÷除數=
誰能說一道與2÷3商一樣的除法算式?學生一邊說,教師一邊板書算式。你為什么認為這些算式的商是一樣的?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想:
既然分數與除法的關系這么緊密、除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)
(二)驗證猜想,建構新知
A、看圖分類
下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數,并把相同的分數分在一起。
B、討論方法
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2=2/4=4/8
C、研究規律
師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?
利用研究卡進行研究。
確定的研究對象
分子和分母同時乘上或者
除以一個相同的`數
得到的分數
研究對象與得到的分數相等嗎?
相等()不相等()
猜想是否成立?
成立()不成立()
充分利用學生的生成資源:揭示課題:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。(板書)
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
練習:2/3=()/18、6/21=2/()、3/5=21/()、27/39=()/13
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數的大小不變)
師:分子與分母是怎樣變化的?(同時乘或除以相同的數,0除外)
師:分數的基本性質與商不變性質有什么聯系?
D、質疑完善
3/4=3×()/4×()
師:括號中可以填哪些數?
預設:可以填無數個數
師:如果只用一個數來表示,填什么數好?
預設:字母
師:這個字母有什么特殊要求嗎?(0除外)
得到一個初級的數學模型。3/4=3×X/4×X(X≠0)
讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?
(三)練習升華
1、5/7=()/35、3/4=9/()、3/()=12/20、16/24=()/3
2、把5/6和1/4都化為分母為12而大小不變的分數。
3、把2/3和3/4都化為分子為6而大小不變的分數。
4、把2/5的分子加上2以后,要使分數的大小不變,分母應加上多少?
5、和哪一個分數大,你能講出判斷的依據嗎?
(四)總結延伸
師:這節課學了什么?
師:如果一個分數為A/B,你能用一個式子來表示分數的基本性質嗎?
A/B=A×X/B×X(X≠0)或A/B=A÷X/B÷X(X≠0)(板書)
六、作業
p87-1、2
五年級下冊《分數的基本性質》教學設計 篇5
教學目標:
結合趣味故事經歷認識分數的基本性質的過程。
初步理解分數的基本性質,會應用分數的基本性質進行分數的改寫。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣
教學重點:
理解掌握分數的基本性質。
教學難點:
歸納分數的性質。
學生準備:
長方形紙片。
一、創設故事情境,激發學生學習興趣并揭示課題。
編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經驗和分數知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數的基本性質提供實踐經驗。在看完故事后向學生提問你了解到了哪些數學信息,想到了什么問題?
讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數大小是相等的。而這兩個分數的分子和分母都不相等,可分數卻相等,這其中有什么規律呢,從而來揭示課題。
二、小組合作,探究新知:
1、動手操作、形象感知
出示課件,讓學生觀察討論圖中分數的涂色部分是多少?
A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?
B、追問:你能通過繼續對折,每次找一個和1/4相等的'其他分數嗎?
C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數表示涂色的部分,得到的分數與1/4是否相等。交流時讓不同對折方法的學生充分展示。
2、觀察比較、探究規律
(1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。
(2既然這三個分數相等,那么我們可以用什么符號把它們連接起來?
(3)這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規律嗎?請同學們四人為一組,討論這兩個問題
(4)通過從左到右的觀察、比較、分析,你發現了什么?
使學生認識到這四個正方形同樣大,雖然平均分的份數不一樣,但陰影部分的面積相等,四個分數也相等。課件出示連等式子。
【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維。】
3引導觀察:請大家觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?
觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:
先從左往右看:1/4是怎樣變為與它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規律?
4、歸納規律
提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規律?
學生交流歸納,最后全班反饋“分數的分子和分母同時乘或除以相同的數﹙0除外﹚,分數的大小不變,這是分數的基本性質”
6、小結
同學們在這節課的學習中表現得很出色,說一說你有什么收獲或體會?
【通過小結,既對整個課堂學習的內容有一個總結,又能讓學生產生后續學習和探究的欲望,將學生的學習興趣延伸到了下節課】
四、鞏固強化,拓展應用
多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。
五、游戲找朋友。
六、布置作業:
在上這課之前,認真備課,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規律,最后也都一一的解答并歸納分數的性質。對于從左到右的變化,分子分母都變大了,但分數大小不變。從右到左,分子分母都變小,分數大小不變。從而得出規律。對于這分數的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數”“零除外”重點讓學生熟記分數的性質。多層的鞏固練習。加深學生的理解。并且能運用分數的性質完成作業。最后,讓學生輕松愉快地應用著這節課所學的知識進行找朋友的游戲。
五年級下冊《分數的基本性質》教學設計 篇6
一、教學目標
1、使學生理解和掌握分數的基本性質,能應用分數的基本性質把一個分數化成指定分母而大小不變的分數。
2、學生通過觀察、比較、發現、歸納、應用等過程,經歷探究分數的基本性質的過程,初步學習歸納概括的方法。
3、激發學生積極主動的情感狀態,體驗互相合作的樂趣。
二、教學重點
1、理解、掌握分數的基本性質,能正確應用分數的基本性質。
2、自主探究出分數的基本性質。
三、教學準備
課件、正方形的紙
四、教學設計過程
(一)遷移舊知.提出猜想
1、回憶舊知
根據“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除數÷除數=()
說一說你是根據什么算的?引導學生回憶商不變的性質?媒體出示:商不變的性質:
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想
既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)
(二)驗證猜想,建構新知
1、你有什么辦法來驗證自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示學習提示。
學習提示
A、同桌合作,借助手中的學具,選擇喜歡的方法,驗證自己的.猜想。
B、驗證結束后,把你的驗證方法和結論與小組同學交流。
3、匯報交流
指名3到4名同學到講臺前與全班同學交流自己的驗證方法和過程,教師相機板書。
C、總結規律
1、師:請同學們看黑板上的兩組分數,說說它們的分子和分母分別是按什么規律變化的。指名回答,教師板書。
2、總結:對于任何一個分數,只要滿足:分數的分子和分母同時乘或除以相同的數,分數的大小就不會發生變化。
3、強調0除外。哪位同學將分數的分子和分母同時乘或除以0進行驗證的?
如果有,問他是否驗證出猜想,驗證過程中出現了什么問題,如果沒有,肯定他們的做法是對的,從而出示完整的規律:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
教師以3/4為例說明分數的分子和分母同時乘或除以0是沒有意義的。
師:再次出示分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。這叫做分數的基本性質。(板書課題)
D教學例2
把2/3和10/24都化為分母為12而大小不變的分數。
學生獨立完成,集體訂正。
(三)練習升華
1、填空
2、下面算式對嗎?如果有錯,錯在哪里?
3、把相等的分數寫在同一個圈里。
4、老師給出一個分數,同學們迅速說出和它相等的分數。
(四)作業
教材59頁第9題。
(五)思維拓展
(六)總結延伸
師:這節課你有什么收獲?
六、板書設計
分數基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
五年級下冊《分數的基本性質》教學設計 篇7
教學內容:
蘇教版數學五年級下冊第60~61頁例1、例2,試一試及練習十一1~3題。
預設目標:
1、使學生經歷探索分數基本性質的過程,初步理解和掌握分數的基本性質,知道它與商不變規律之間的聯系。
2、使學生能應用分數的基本性質,把一個分數化成指定分母或分子而大小不變的分數。
3、使學生在觀察、操作、思考和交流等活動中,培養分析、綜合和抽象、概括能力,體驗數學學習的樂趣。
教學重點:
探索、發現、歸納和理解分數的基本性質。
教學過程:
一、導入
猜謎:你有我有他也有,黑身子黑腿黑腦袋,燈前月下伴你走,就是從來不開口。
二、學習新知
1、提供例證
(1)觀察兩個算式:1÷32÷6,問這兩個算式的商相等嗎?你的依據是什么?你能接著往下再寫一個除法算式嗎?
板書:1/3=2/6=3/9(得出三個相等的分數)
(2)學生折紙找與1/2相等的分數。
你能先對折,涂色表示它的1/2嗎?你能通過繼續對折,找出和1/2相等的其他分數嗎?
展示與1/2相等的分數,并逐步板書:1/2=2/4=4/8=8/16
2、誘導探索
提問:這些分數的分子、分母都不同,但是它們的大小都是一樣的,這里隱藏著什么規律呢?分數的分子、分母怎樣變化分數的大小不變呢?
3、探究新知
(1)獨立思考或小組交流。
(2)探究驗證。
你能從(1/2=2/4、1/2=4/8、1/2=8/16)這三組分數中任意選一組具體說說分數的.分子、分母怎樣變化以后,分數的大小不變?
教師根據學生的回答進行板書。
4、揭示結論:出示分數的基本性質的內容,并揭示課題。
5、深究結論:
(1)在分數的基本性質中,你認為哪些字詞比較重要,為什么?
(2)齊讀并理解記憶分數的基本性質。
三、多層練習
1、填一填。(在○里填運算符號,在□里填數或字母)。
4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14
5/8=5○□/8○67/12=7○□/12○□
2、判斷。
3/4=3+4/4+4()12/15=12÷n/15÷n()
5/25=5×5/25÷5()5/6=25/30()
四、課堂作業:
1、第62頁“練一練”2。
2、第63頁第3題。
3、每日一題:請判斷3/4和3+6/4+8是否相等,為什么?
反思
“分數的基本性質”在分數教學中占有重要的地位,它是約分、通分的依據,對于以后學習比的基本性質也有很大的幫助,所以分數的基本性質是本單元的教學重點。這節課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數學知識,更主要的是數學學習的方法,
從而激勵學生進一步地主動學習,產生我會學的成就感,讓學生學會學習,學會思考,學會創造,進而培養學生用數學的思想方法思考并解決在實際生活中所遇到的各種問題,這也是學生適應未來生活必須的基本素質。學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行的,這節課我是這樣設計教學的:
1、通過商不變的性質、除法與分數的關系的復習,幫助學生意識到商不變的變規律與新知識的聯系,為新知識的學習做好必要的準備。
2、學生在自主探索中科學驗證。
在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發學生主動探究的欲望。在探索“分數的基本性質”和驗證性質時,通過創設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現出課堂教學以學生為本的特性。每一步教學,都強調學生自主參與,通過規律讓學生自主發現、方法讓學生自主尋找、問題讓學生自主解決,使學生獲得成功的體驗,增強學習的自信心。
3、讓學生在多層練習中鞏固深化。
在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。填空題第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3、4題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題是開放題,加深學生對分數的基本性質的認識,激發學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。
反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證。因為數學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。
五年級下冊《分數的基本性質》教學設計 篇8
教學要求
①使學生理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
②培養學生觀察、分析和抽象概括能力。
③滲透“事物之間是相互聯系”的辯證唯物主義觀點。
教學重點
理解分數的基本性質。
教學用具
每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。
教學過程
一、創設情境
1、120÷30的商是多少?被除數和除數都擴大3倍,商是多少?被除數和除數都縮小10倍呢?
2、說一說:
(1)商不變的性質是什么?
(2)分數與除法的關系是什么?
3、填空。
1÷2=(1×2)÷(2×2)==。
二、揭示課題
讓學生大膽猜測:在除法里有商不變的`性質,在分數里會不會也有類似的性質存在呢?這個性質是什么呢?
隨著學生的回答,教師板書課題:分數的基本性質。
三、探索研究
1、動手操作,驗證性質。
(1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數表示出來。
(2)觀察比較后引導學生得出:==
(3)從左往右看:==
由變成,平均分的份數和表示的份數有什么變化?
把平均分的份數和表示的份數都乘以2,就得到,即==(板書)。
把平均分的份數和表示的份數都乘以3,就得到,即:==(板書)。
引導學生初步小結得出:分數的分子、分母同時乘以相同的數,分數的大小不變。
(4)從右往左看:==
引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。
板書:====
讓學生再次歸納:分數的分子、分母同時除以相同的數,分數的大小不變。
(5)引導學生概括出分數的基本性質,并與前面的猜想相回應。
(6)提問:這里的“相同的數“,是不是任何數都可以呢?(補充板書:零除外)
2、分數的基本性質與商不變的性質的比較。
在除法里有商不變的性質,在分數里有分數的基本性質。
想一想:根據分數與除法的關系以及整數除法中商不變的性質,你能說明分數的基本性質嗎?
3、學習把分數化成指定分母而大小不變的分數。
(1)出示例2,幫助學生理解題意。
(2)啟發:要把和化成分母是12而大小不變的分數,分子應該怎樣變化?變化的根據是什么?
(3)讓學生在書上填空,請一名學生口答。教師板書:
4、練習。教材第108頁的做一做。
四、課堂實踐。
練習二十三的1、3題。
五、課堂小結
1、這節課我們學習了什么內容?
2、什么是分數的基本性質?
六、課堂作業
練習二十三的第2題。
七、思考練習
練習二十三的第10題。
后記:
五年級下冊《分數的基本性質》教學設計 篇9
教學目標:
知識與技能:理解和掌握分數的基本性質,知道分數基本性質與整數除法中商不變性質的關系。能運用分數的基本性質把一個分數化成分母相同而大小不變的分數;培養學生觀察比較、抽象概括及動手實踐的能力,進一步發展學生的思維。
過程與方法:
經歷探究分數基本性質的過程,感受“變與不變”,“轉化”等數學思想方法。情感態度與價值觀:激發學生積極主動的情感狀態,養成注意傾聽的習慣,體驗互助合作的樂趣。
教學重點:
理解和掌握分數的基本性質,會運用分數的基本性質。
教學難點:
自主探究出分數的基本性質
教學準備:
PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。
教學流程:
一、故事導入激趣引思
引言:細心的同學一定聽出來了,剛剛老師播放的是哪部動畫片的主題歌?對,我們今天的學習就從西游記的故事說起。
講故事:話說唐僧師徒四人去西天取經,一路上歷經磨難。一天,他們走得又累又餓,幸好路過一個村莊,化緣得到三塊同樣大小的餅。唐僧心想:三塊餅,四個人不太好分呀!但是很快他就想到了一個分餅的方案,他對徒弟們說:我準備將第一塊餅,平均分成2份,八戒吃其中的二分之一;將第二塊餅平均分成4份,沙和尚吃其中的四分之二;將第三塊餅平均分成8份,悟空吃其中的八分之四,你們同意這樣的分配方案嗎?師父的話音未落,豬八戒便跳出來說:“我不同意這樣的分法,師父你太偏心了,憑什么猴哥吃那么多有八分之四,而我卻吃那么少才二分之一。同學們,請你們判斷一下,豬八戒說的對嗎,師父真的偏心嗎?
生發表見解。
二、自主合作探索規律
1、反饋引導:1/2=2/4=4/8。“三個徒弟分得的餅一樣多---等式---仔細瞧瞧這組分數等式的'分子分母相同么?但是它們的大小卻?再用變化的眼光瞧瞧,(師畫正反向兩箭頭)我們發現分數的分子分母改變了,什么卻沒有變?師貼板帖分數可真與眾不同呵!
2、提出探究任務:那如果我讓們動手做或者聯系生活實際想,像這樣大小相等的分數,只有一組嗎?你們能不能找出一些給老師看看?找之前請位同學為我們讀一讀小組合作學習要求:
(1)每個小組找出一組大小相等的分數,并想辦法證明這組分數大小相等。
(2)思考:在寫分數的過程中你們發現了什么規律?
組內商量一下然后開始行動!
3、小組研究教師巡視
4、全班匯報
交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯系一組人數說發現規律把每組數從左往右或者從右向左仔細觀察你能發現分子分母的怎樣的變化規律?(可以舉例說演繹推理深入)隨機更換貼圖
板書課題:分數的基本性質打出幻燈
5、反思規律看書對照找出關鍵詞要求重讀共同讀
6、引證規律:3/4=12/16剛剛動手做我們驗證了這組大小相等的分數的正確性并由此發現了分數的基本性質那你能否利用分數與除法的關系以及整數除法中商不變性質,再一次說明分數的基本性質。
三、自學例題運用規律
過渡:同學們剛剛的精彩表現展示出了你們強大的學習能力,所以在接下來的一段時間里,老師請你們自學課本96頁的例2并完成相應“練一練”。現在開始
生自學
集體評議:例2練一練1和2,請說說你的根據和想法!重點讓學生說說根據什么,分母、分子是如何變化的。
四、多層練習鞏固深化
1、判斷對錯并說明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數
思考:分數的分母相同,能有什么作用?
3、圈分數游戲圈出與1/2相等的分數
4、對對碰與1/2,2/3,3/4生生組組師生互動
五、課堂小結課堂作業
結語:你看,運用數學知識玩游戲,也是樂趣無窮。這節課我們就上到這兒,
作業:余下來的時間請完成課本97頁練習十八的1-3題,做在書上。
五年級下冊《分數的基本性質》教學設計 篇10
教學內容:
教科書第60~61頁,例1、例2、
練一練,練習十一第1~3題。
教學目標:
1、使學生經歷探索分數基本性質的過程,初步理解分數的基本性質。
2、使學生能運用分數的基本性質,把一個分數化成指定分母或分子而大小不變的分數。
3、使學生在觀察、操作、思考和交流等活動中,培養分析、綜合和抽象,概括的能力,體現數學學習的樂趣。
教學重點:
讓學生在探索中理解分數的基本性質。
教學過程:
一、導入新課
1、我們已經學習了分數的有關知識,這節課在已經掌握的知識基礎上繼續學習。
2、出示例1圖。
你能看圖寫出哪些分數?你是怎樣想的?說出自己的想法。
二、教學新課
1、教學例1。
(1)這四個分數,為什么分母不同呢?前兩個分數的分子為什么都是1?
(2)你其中哪幾個分數是相等的嗎?你是怎么知道這三個分數相等的?
(3)演示驗證。
2、教學例2。
(1)取出正方形紙,先對折,用涂色部分表示它的'1/2。學生操作活動。
(2)你能通過繼續對折,找出和1/2相等的其它分數嗎?學生操作活動。交流匯報。對折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分數表示?(板書)
(3)得到的這些分數與1/2相等嗎?能不能再寫一些與1/2相等的數?
(4)觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?觀察、思考,試著完成填空。在小組中說說你有什么發現?
(5)小結。分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變,這是分數的基本性質。板書課題:分數的基本性質。
(6)為什么要“0”除外呢?
(7)你能根據分數的基本性質,寫出一組相等的分數嗎?學生嘗試完成。
(8)根據分數和除法的關系,你能用整數除法中商不變的規律來說明分數的基本性質嗎?在小組中說一說。
3、完成練一練。
(1)完成第1題。涂色表示已知分數,再在右圖中涂出相等部分。說說怎么想的?
(2)完成第1題。獨立完成,匯報想法。5到15乘了幾?1怎么辦?先看哪個數?(分子9)9到1除以幾?分母18怎么辦?
三、鞏固練習
1、完成練習十一第1題。平均分成了多少份?表示多少份?涂色表示。涂色部分還表示幾分之幾?
2、完成第2題。獨立完成,交流想法。
四、課題總結
今天有了什么收獲?你認為學習了分數的基本性質有什么作用?在什么時候可能會用到它?
五年級下冊《分數的基本性質》教學設計 篇11
教學目標
1、理解和掌握分數的基本性質,知道分數的基本性質與整數除法中商不變的性質之間的聯系。
2、能運用分數的基本性質把一個分數化成分母不同而大小相等的分數。
3、培養學生觀察、比較、抽象概括的邏輯思維能力,滲透“事物之間是相互聯系的”辯證唯物主義觀點。
教學重難點
理解分數基本性質的含義,掌握分數基本性質的推導過程。運用分數的基本性質解決實際問題。
教學工具
課件
教學過程
一、復習舊知,溝通聯系。
1、口答下面各題。
12÷3 =(12×10)÷(3×□)
18 ÷6 =(18÷□)÷(6÷ 3)
你是根據什么填的?還記得商不變的'規律是怎樣敘述的嗎?
4 ÷5=()÷3
你是根據什么填的?分數與除法之間有什么關系?
2、猜想。
同學們,在除法里,有商不變的規律,而分數與除法是有聯系的,那么,請同學們猜測一下,在分數里會不會也有類似的性質存在呢?
在分數里究竟有沒有類似的性質存在,如果有,它又是怎樣的呢?今天我們一起來研究這個問題。
二、探究新知,揭示規律。
1、感知規律
(1)動手操作
①小組合作分別把三張一樣大的圓形紙片平均分成兩份、四份、八份。
②涂色:把平均分成兩份的將其中的一份涂上顏色,把平均分成四份的將其中的兩份涂上顏色,把平均分成八份的將其中的四份涂上顏色。
③把涂色部分用分數表示出來。
④比一比:這3個分數之間有什么關系?
生通過動手操作,發現這三個分數之間是相等的關系。
學生匯報后,教師用電腦演示。
生觀察分子分母變化規律發現:分數的分子和分母同時乘相同的數,分數大小不變。
(2)繼續發現
師課件出示三個大小形狀完全相同的長方形,請學生用分數表示涂色部分,并觀察涂色部分,看有什么發現。
生發現涂色部分是相同的。
觀察分子分母的變化規律發現:分數的分子和分母同時除以相同的數,分數大小不變。
也不能同時除以0。
2、抽象概括,總結規律。
引導學生觀察、比較,回憶知識的形成過程,總結概括出分數的基本性質。不完善的互相補充。(討論為什么0除外)
想一想:根據分數與除法的關系,以及整數除法中商不變的性質,你能說明分數的基本性質嗎?
3、運用規律,自學例題。
(1)分組討論。
把和分別化成分母是12而大小不變的分數。分子應怎樣變化?變化的依據是什么?
(2)匯報討論情況。
(3)小結:我們可以應用分數的基本性質把一個分數化成分母不同而大小相等的分數。
三、多層練習,鞏固深化
1、基本練習。
根據分數的基本性質,把下列等式補充完整。
學生口答后,要求說出是怎樣想的。
2、判斷。(手勢表示,并說明理由。)
(1)分數的分子、分母都乘以或除以相同的數,分數的大小不變。()
(2)把15/20的分子縮小5倍,分母也同時縮小5倍,分數的大小不變。()
(3)的分子乘以3,分母除以3,分數的大小不變。()
3、把2/3和4/24化成分母是12而大小不變的分數。
四、今天你有哪些收獲。
五年級下冊《分數的基本性質》教學設計 篇12
教學目標 :
1、理解分數的基本性質,并了解它與除法中商不變的規律之間的聯系。
2、理解和掌握分數的基本性質。
3、培養學生觀察、理解
4、較好實現知識教育與思想教育的有效結合。
教學重點 :
理解和掌握分數的基本性質。
教學難點 :
能熟練、靈活地運用分數的基本性質。
教具準備 :
“分數基本性質”課件,正方形紙片,彩色粉筆。
教學過程:
一、巧設伏筆、導入新課。
1、出示課件:120÷30的商是多少?
被除數和除都擴大3倍,商是多少?
被除數和除數都縮小10倍呢?(出示后學生回答,課件顯示答案)
2、在下面□里填上合適的數。
1÷2=(1×5)÷(2×□)
=(1÷□)÷(2÷4)
①想一想,你是根據什么填上面的數的?(生口答)
(課件:商不變的性質)
②商不變的性質是什么?(生口答)
③除法與分數之間有什么關系?
生答,師板書:被除數÷除數=被除數/除數
二、討論探究,學習新知。
1、課件出示:1÷2= (怎么寫)
①1/2與( )相等?你能想出哪些數?有辦法怎么讓它們相等嗎?
讓生合作探討。
②生出示答案:1/2=2/4=4/8……
有選擇填入上數。
2、引導學生證明它們相等。
①出課件:出示1個長方體,平均分成2份,得1/2,平均分成4份,得2/4……。
(課件演示)
上述演示讓學生感知后,問你發現了什么?(生討論)
②再逆向思考,觀察板書和課件。
問你又發現了什么?(生討論)
得到:(板書)分數的分子和分母同時乘上或者除以相同的數,分數的大小不變。
3、驗證、補充、強調
①出示2/5=2×2/5=4/5,對嗎?(驗證分數的基本性質),為什么?強調“同時”(在黑板板書上用彩筆勾劃強調)。
②出示3/4=3×3/4×4=9/16,對嗎?為什么?強調“相同的數”。
③右邊列式行嗎?為什么?3/4=3×0/4×0=?補充:(0除外)板書,并出示課件補充。
④歸納出上述板書為“分數的基本性質”(課題)。
4、信息反饋、糾正、鞏固。
①判斷(出示課件)
A、分數的分子,分母都乘上或除以相同的.數,分數的大小不變。
B、把15/20的分子縮小5倍,分母也縮小5倍,分數的大小不變。
C、3/4的分子乘上3,分母除以3,分數的大小不變。
D、10/24=10÷2/24÷2=10×3/24×3 ( )
完成后,強調重點,加以鞏固。
②完成課本108頁例2(學生嘗試練習)
強調運用了什么性質?課件:“分數的基本性質”醒目強調。
三、實踐練習,信息綜合
1、練一練
①3/5=3×( )/5×( )=9/( )
②7/8=( )/48
③4÷18=( )/( )=4×5/18×( )=2/( )
2、練習二十二1—3題。
四、課堂總結、整體感知。
(在信息綜合后,重點選擇性小結,形成整體),這節課我們學習了什么內容?可以應用在什么地方?這與我們學習過的什么性質有聯系?
五、發散鞏固、自主選擇。
想一想:(選擇一道你喜歡的題做)
課件:①與1/2相等的分數有多少個?想象一下,把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數。
②9/24和20/32哪能一個數大一些,你能講出判斷的依據嗎
五年級下冊《分數的基本性質》教學設計 篇13
教學目標:
1.理解分數的基本性質,并了解它與除法中商不變的規律之間的聯系。
2.理解和掌握分數的基本性質。
3.較好的實現知識教育與思想教育的有效結合。
教學重點:
理解和掌握分數的基本性質。
教學難點:
能熟練、靈活地運用分數的基本性質。
教學過程:
一、創設情景
師:同學們,為了讓你們了解到更多的科技知識,在科技周活動中,學校做了三塊科普展板(投影出示教材中的三塊展板)。同學們認真觀察,你們能提出什么問題?
師:猜想對解決問題很重要,它們到底相不相等?下面以小組為單位,想辦法來驗證一下。
二、新授
師:同學們想了很多好的方法,哪個小組愿意匯報一下?
生1:我們組是用畫圖的方法來驗證的。我們先畫了三個大小一樣的正方形表示三塊展板,把它們分別平均分成2份、4份和8份,再分別去其中的1份、2份和4份涂上顏色(展示學生畫的圖)。通過比較我們發現,涂色部分的大小是相等的,所以
生2:我們組是用折紙的方法來驗證的。我們先取了三根同樣長的紙條,通過對折把它們分別平均分成2份、4份和8份,分別涂色表示(展示學生的折紙情況)。通過折紙我們組也發現(學生在小組中討論、驗證)
師:我們發現的.這個規律,就是分數的基本性質。
同學們現在小組內總結一下,什么是分數的基本性質?
(學生認真討論)
師:同學們匯報一下你們的討論結果。
三、 自主練習 鞏固提高
課本第80頁1、2、3、題。
其中,第1題引導學生通過涂色和比較,加深對分數基本性質的直觀感受。
第2題二生爬黑板板演,第3、4 題學生自做。師巡視指導。
課堂小結 :
一生小結,他生補充,教師評判。
五年級下冊《分數的基本性質》教學設計 篇14
教學目的:
理解分數的基本性質,并了解它與除法中商不變的規律之間的聯系。
2.理解和掌握分數的基本性質。
3.較好實現知識教育與思想教育的有效結合。
教學難點:
理解和掌握分數的基本性質,并運用分數的基本性質解決問題,進一步加深分數與除法之間的關系。
教學準備:
板書有關習題的幻燈片。
教學過程:
一、復習
1.出示
在括號里填上適當的數:
指名說一說結果,并說一說你是根據什么填的?
二、課堂練習:
1.自主練習第4題。
學生先獨立做,教師巡視,并個別指導,集體訂正。
教師板書題目中的線段,指名讓學生板演。
在直線那些分數用同一個點表示是什么意思?(就是問哪幾個分數相等。)
怎樣找出相等的分數?
讓學生自己找。集體訂正是要求學生說一說你是根據什么找出相等的'分數的?
然后要求學生在書上把這幾個相應的點找出來。指名板演。
2.自主練習第5題。
先讓學生獨立做,教師巡視。個別指導。
指名說一說你的結果,并說一說你是根據什么填的。重點要求學生說清楚利用分數的基本性質來進行填空。
教師根據學生的回答選擇幾個題目進行板書。
3.自主練習第6題。
先讓學生獨立做。教師巡視并個別指導。注意差生中出現的問題。
集體訂正。指名說一說自己的計算過程和結果。
教師根據學生的回答選擇幾個題目進行板書。
4.自主練習第7題。
學生獨立做。教師要求有困難的學生分組討論,教師個別指導。
集體訂正。指名說一說自己的計算過程。教師注意要求學生說清楚計算的根據和理由。
5.自主練習第8題。
學生先獨立做。
集體訂正時,教師先要求學生說一說可以用哪些方法來比較這些分數的大小?哪種方法最好?
【五年級下冊《分數的基本性質》教學設計】相關文章:
分數的基本性質教學設計04-05
分數的基本性質教學設計04-13
分數的基本性質優秀教學設計09-22
《比例的基本性質》教學設計05-12
分數的意義和性質教學設計11-09
《分數的意義和性質》教學設計03-21
分數的意義和性質教學設計通用04-06
《比例的意義和基本性質》教學設計04-28
不等式基本性質教學設計02-26
《分數的意義和性質》教學設計10篇04-13